题目内容

如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是(  )
A.2B.1C.2-
2
2
D.2-
2

若△ABE的面积最小,则AD与⊙C相切,连接CD,则CD⊥AD;
Rt△ACD中,CD=1,AC=OC+OA=3;
由勾股定理,得:AD=2
2

∴S△ACD=
1
2
AD•CD=
2

易证得△AOE△ADC,
S△AOE
S△ADC
=(
OA
AD
2=(
2
2
2
2=
1
2

即S△AOE=
1
2
S△ADC=
2
2

∴S△ABE=S△AOB-S△AOE=
1
2
×2×2-
2
2
=2-
2
2

另利用相似三角形的对应边的比相等更简单!
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网