题目内容

18.若n为整数,且$\sqrt{{n}^{2}+9n+30}$是自然数,则n=-14或-7或-2或5.

分析 设$\sqrt{{n}^{2}+9n+30}$=p,再把等式两边同时乘以4,利用平方差公式把等式左边化为两个因式积的形式,列出关于p、n的方程组,求出n的值即可.

解答 解:∵设$\sqrt{{n}^{2}+9n+30}$=p(P为非负整数),则n2+9n+30=p2
∴4n2+36n+120=4p2
∴(2n+9)2+39=4p2
∴(2p+2n+9)(2p-2n-9)=39,
∴$\left\{\begin{array}{l}2p+2n+9=1\\ 2p-2n-9=39\end{array}\right.$或$\left\{\begin{array}{l}2p+2n+9=39\\ 2p-2n-9=1\end{array}\right.$或$\left\{\begin{array}{l}2p+2n+9=3\\ 2p-2n-9=13\end{array}\right.$或$\left\{\begin{array}{l}2p+2n+9=13\\ 2p-2n-9=3\end{array}\right.$,
解得$\left\{\begin{array}{l}p=10\\ n=-14\end{array}\right.$或$\left\{\begin{array}{l}p=10\\ n=5\end{array}\right.$或$\left\{\begin{array}{l}p=4\\ n=-7\end{array}\right.$或$\left\{\begin{array}{l}p=4\\ n=-2\end{array}\right.$,
∴n=-14或-7或-2或5.
故答案为:-14或-7或-2或5.

点评 本题考查的是二次根式的性质与化简,先根据题意把原式化为两个因式积的形式是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网