题目内容
如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于 度.
在Rt△ABC中,∠C=90°,AB=10,AC=8,点Q在AB上,且AQ=2,过Q做QR⊥AB,垂足为Q,QR交折线AC﹣CB于R(如图1),当点Q以每秒2个单位向终点B移动时,点P同时从A出发,以每秒6个单位的速度沿AB﹣BC﹣CA移动,设移动时间为t秒(如图2).
(1)求△BCQ的面积S与t的函数关系式.
(2)t为何值时,QP∥AC?
(3)t为何值时,直线QR经过点P?
(4)当点P在AB上运动时,以PQ为边在AB上方所作的正方形PQMN在Rt△ABC内部,求此时t的取值范围.
用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是 cm2.
如图,一次函数y=kx+b与反比例函数的图象交于点A(1,6),B(3,n)两点.
(1)求一次函数的表达式;
(2)在y轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积;
(3)点M是直线AB第一象限内图象上一点,过点M作MN⊥x轴,垂足为点N,过点B作BD⊥y轴,垂足为点D,若△MON的面积大于△BOD的面积,直接写出点M的横坐标x的取值范围.
(1)计算:
(2)解不等式组:.
因式分【解析】x2﹣3x=
如图,已知抛物线(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D.
(1)若点D的横坐标为﹣5,求抛物线的函数表达式;
(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
连续抛掷一枚均匀的硬币两次,结果出现一正一反的概率等于 .
老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.
(1)补全小明同学所画的树状图;
(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.