题目内容
如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.
(1)求点M的坐标(用含t的代数式表示).
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.
(3)当t为何值时,四边形BNDM的面积最小.
用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2 013颗黑色棋子?请说明理由.
下面是用棋子摆成的“上”字:
下列运算中正确的是( ).
A. 3a-2a=1 B. a·a2=3a3
C. (ab2)3=a3b3 D. a2·a3=a5
计算:
下列计算错误的是( ).
比较a+b与a-b的大小时,我们可以采用下列解法:
解:∵(a+b)-(a-b)=a+b-a+b=2b,
∴当2b>0,即b>0时,a+b>a-b;
当2b<0,即b<0时,a+b<a-b;
当2b=0,即b=0时,a+b=a-b;
这种比较大小的方法叫“作差法”,请用“作差法”比较x2-x+1与x2+2x+1的大小.
如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是( )
A.﹣2 B.﹣4 C.﹣ D.