题目内容


如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).

(1)求反比例函数的解析式;

(2)连接EF,求△BEF的面积.


解:(1)∵反比例函数y=(k<0)的图象过点E(﹣1,2),

∴k=﹣1×2=﹣2,

∴反比例函数的解析式为y=﹣

(2)∵E(﹣1,2),

∴AE=1,OA=2,

∴BE=2AE=2,

∴AB=AE+BE=1+2=3,

∴B(﹣3,2).

将x=﹣3代入y=﹣,得y=

∴CF=

∴BF=2﹣=

∴△BEF的面积=BE•BF=×2×=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网