题目内容

如图所示的三角形纸片中∠B=90°,AC=13,BC=5.现将纸片进行折叠,使得顶点D落在AC边上,折痕为AE.则BE的长为( )

A.2.4
B.2.5
C.2.8
D.3
【答案】分析:由∠B=90°,AC=13,BC=5,可求得AB的长,设BE=x,由折叠的性质可得:△DEC是直角三角形,ED=BE=x,EC=5-x,CD=1,然后由勾股定理求得BE的长.
解答:解:∵∠B=90°,AC=13,BC=5,
∴AB==12,
设BE=x,
由折叠的性质可得:CD=AC-AD=13-12=1,DE=BE=x,∠ADE=∠B=90°,
∴EC=BC-BE=5-x,
在Rt△DEC中,EC2=CD2+DE2
∴(5-x)2=1+x2
解得:x=2.4,
∴BE=2.4.
故选A.
点评:此题考查了折叠的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网