题目内容
“两直线平行,同位角相等。”的题设是 ,结论是 。
两直线平行 ,同位角相等。
如图,在抛物线中, 抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:。
(1)求m的值;
(2)动点P从B点出发,沿x轴反方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时点P的坐标。
如图,点B1在反比例函数y=(x>0)的图象上,过点B1分别作x轴和y轴的垂线,垂足为C1和A,得到第一个矩形AOC1B1,点C1的坐标为(1,0);取x轴上一点C2(,0),过点C2作x轴的垂线交反比例函数图象于点B2,过B2作线段B2 A1⊥B1C1,,交B1C1于点A1,得到第二个矩形A1C1C2B2;依次在x轴上取点C3(2,0),C4(,0) 按此规律作矩形,则第10个矩形A9C9C10B10的面积为 .
下列说法中正确的是( )
A、 有且只有一条直线垂直于已知直线
B、 从直线外一点到这条直线的垂线段,叫做这点到这条直线距离
C、 互相垂直的两条线段一定相交
D、 直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长是3cm,则点A到直线c的距离是3cm
若Ð1+Ð2=90°,则Ð1与Ð2的关系是 ,若 Ð1+ Ð2=180°,Ð3+Ð2=180°则Ð1与Ð3的关系是 。
如图(12),已知∠BED=∠B+∠D,试说明AB与CD的关系。
解:AB∥CD,理由如下:
过点E作∠BEF=∠B
∴AB∥EF( )
∵∠BED=∠B+∠D
∴∠FED=∠D
∴CD∥EF( )
∴AB∥CD( )
已知,如图(19)∠1=∠2,CE∥BF,求证:AB∥CD(5分)
如图14,若如果∠1= 那么AB∥EF,若如果∠1=___那么DF∥AC,若∠DEC+___=180°,那么DE∥BC.
将点P先向左平移2个单位,再向下平移2个单位得点P′,则点P′的坐标为( )。
A. B. C. D.