题目内容

2.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,∠AOD=60°,则四边形CODE的面积为(  )
A.2$\sqrt{3}$B.4C.4$\sqrt{3}$D.8

分析 首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.

解答 解:∵四边形ABCD是矩形,
∴BD=AC,DO=BO,AO=CO,
∴OD=OA,
∵∠AOD=60°,
∴△AOD是等边三角形,
∴DO=AO=AD=OC=4,
∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∴四边形CODE是菱形,
∴四边形CODE的面积=2△COD的面积=2×2×2×sin120°=4$\sqrt{3}$.
故选:C.

点评 此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网