【题目】已知z,y之间的一组数据如下表:
x | 1 | 3 | 6 | 7 | 8 |
y | 1 | 2 | 3 | 4 | 5 |
(1)从x ,y中各取一个数,求x+y≥10的概率;
(2)对于表中数据,甲、乙两同学给出的拟合直线分别为
与
,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.
【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件
,用随机模拟的方法估计事件
发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件
发生的概率为( )
A.
B.
C.
D. ![]()
【题目】某班随机抽查了
名学生的数学成绩,分数制成如图的茎叶图,其中
组学生每天学习数学时间不足
个小时,
组学生每天学习数学时间达到一个小时,学校规定
分及
分以上记为优秀,
分及
分以上记为达标,
分以下记为未达标.
![]()
(1)根据茎叶图完成下面的列联表:
达标 | 未达标 | 总计 | |
| |||
| |||
总计 |
(2)判断是否有
的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.
参考公式与临界值表:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|