【题目】AC为对称轴的抛物线的一部分,点B到边AC的距离为2km,另外两边AC,BC的长度分别为8km,2 km.现欲在此地块内建一形状为直角梯形DECF的科技园区. (1)求此曲边三角形地块的面积;(2)求科技园区面积的最大值.
【题目】如图,等边三角形的中线与中位线相交于,已知是绕旋转过程中的一个图形,下列命题中,错误的是
A. 恒有⊥
B. 异面直线与不可能垂直
C. 恒有平面⊥平面
D. 动点在平面上的射影在线段上
【题目】在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数中第2014个数是( )
A. 3965 B. 3966 C. 3968 D. 3989
【题目】已知正项等比数列{an}的前n项和为Sn , 且S2=6,S4=30,n∈N* , 数列{bn}满足bnbn+1=an , b1=1(1)求an , bn;(2)求数列{bn}的前n项和为Tn .
【题目】已知函数f(x)=是奇函数,g(x)=log2(2x+1)-bx是偶函数.
(1)求a-b;
(2)若对任意的t∈[-1,2],不等式f(t2-2t-1)+f(2t2-k)<0恒成立,求实数k的取值范围.
【题目】已知函数,
(1)当时,求函数的单调区间;
(2)若函数在区间上有1个零点,求实数的取值范围;
(3)是否存在正整数,使得在上恒成立?若存在,求出k的最大值;若不存在,说明理由.
【题目】如图,圆x2+y2=8内有一点P(-1,2),AB为过点P且倾斜角为α的弦.
(1)当弦AB被点P平分时,求直线AB的方程;
(2)求过点P的弦的中点M的轨迹方程.
【题目】如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.
(1)求证:MB∥平面AC1N;
(2)求证:AC⊥MB.
【题目】如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于点P (1)证明:PF∥面ECD;(2)求二面角B﹣EC﹣A的大小.
【题目】已知函数,( , ).
(1)若, ,求函数的单调减区间;
(2)若时,不等式在上恒成立,求实数的取值范围;
(3)当, 时,记函数的导函数的两个零点是和(),求证: .