题目内容
【题目】AC为对称轴的抛物线的一部分,点B到边AC的距离为2km,另外两边AC,BC的长度分别为8km,2 km.现欲在此地块内建一形状为直角梯形DECF的科技园区.
(1)求此曲边三角形地块的面积;
(2)求科技园区面积的最大值.
【答案】
(1)解:以AC所在的直线为y轴,A为坐标原点,建立平面直角坐标系xOy,如图所示;
则A(0,0),C(0,8),
设曲边AB所在的抛物线方程为y=ax2(a>0),
则点B(2,4a),
又|BC|= =2 ,
解得a=1或a=3(此时4a=12>8,不合题意,舍去);
∴抛物线方程为y=x2,x∈[0,2];
又 x2= x3 = ,
∴此曲边三角形ABC地块的面积为
S梯形ACBM﹣ x2= ×(8+4)×2﹣ = ;
(2)解:设点D(x,x2),则F(0,x2),
直线BC的方程为:2x+y﹣8=0,
∴E(x,8﹣2x),
|DF|=x,|DE|=8﹣2x﹣x2,|CF|=8﹣x2,
直角梯形CEDF的面积为
S(x)= x[(8﹣2x﹣x2)+(8﹣x2)]=﹣x3﹣x2+8x,x∈(0,2),
求导得S′(x)=﹣3x2﹣2x+8,
令S′(x)=0,解得x= 或x=﹣2(不合题意,舍去);
当x∈(0, )时,S(x)单调递增,
x∈( ,2)时,S(x)单调递减,
∴x= 时,S(x)取得最大值是
S( )=﹣ ﹣ +8× = ;
∴科技园区面积S的最大值为 .
【解析】(1)以AC所在的直线为y轴,A为坐标原点建立平面直角坐标系,求出曲边AB所在的抛物线方程,利用积分计算曲边三角形ABC地块的面积;(2)设出点D为(x,x2),表示出|DF|、|DE|与|CF|的长,求出直角梯形CEDF的面积表达式,利用导数求出它的最大值即可.
【考点精析】利用扇形面积公式对题目进行判断即可得到答案,需要熟知若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,.
【题目】某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望;
(Ⅲ)若在这50名被调查者中随机发出20份的调查问卷,记为所发到的20人中赞成“车辆限行”的人数,求使概率取得最大值的整数.