(Ⅱ)设,求证:
评卷人
得 分
(Ⅰ)求正实数的取值范围;
设函数在上是增函数.
19.(本小题满分13分)
某电视台《快乐五溪》节目有一个有奖竞猜的环节.主持人为幸运观众准备了A、B、C三个相互独立的问题,并且宣布:幸运观众答对问题A可获奖金1000元,答对问题B可获奖金2000元,答对问题C可获奖金4000元,回答问题的先后顺序由观众自由选择,且每种答题顺序的选择都是等可能的. 但只有第一个问题答对,才能再回答第二题,只有答对第二个问题,才能再回答第三题,否则终止答题.假设幸运观众能答对问题A、B、C的概率分别为、、.
(I) 求幸运观众获得奖金5000元的概率;
(II)甲观众认为应选择先易后难的顺序(即A→B→C)回答问题,乙观众认为应选择先难后易的顺序(即C→B→A)回答问题. 请你分析他俩的说法,相比较而言,谁可能获得更多的奖金?
18. (本题满分12分)
(Ⅱ)求二面角的大小.
如图2,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC 所成的角为60°.
(Ⅰ)求证:平面PAC⊥平面ABC;
17.(本小题满分12分)