24.如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米,
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥千米,(桥长忽略不计)货车以每小时40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?
23.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图像(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).
根据图像提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?
22.华联商场以每件30元购进一种商品,试销中发现每天的销售量(件)与每件的销售价(元)满足一次函数y=162-3x;
(1)写出商场每天的销售利润(元)与每件的销售价(元)的函数关系式;
(2)如果商场要想获得最大利润,每件商品的销售价定为多少为最合适?最大销售利润为多少?
21. 已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,
(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线。
(2)若点(x0,y0)在抛物线上,且0≤x0≤4,试写出y0的取值范围。
20.二次函数y=x2-2x-3与x轴两交点之间的距离为_________.
19.抛物线y=(x-1)2+3的顶点坐标是____________.
18.若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则c=__
_________________(只要求写一个).
17.把二次函数y=x2-4x+5化成y=(x-h)2+k的形式:y=___________
16.将二次函数y=x2-4x+ 6化为 y=(x-h)2+k的形式:y=___________
15.用列表法画二次函数的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是( )
A.506 B.380 C.274 D.182