9.作用在同一物体上的两个力F1=F2=15N,用作图法分别求出夹角为300、900、1200时合力的大小和方向.
10如图3-4-5所示,悬挂在天花板下重60N的小球,在均匀的水平风力作用下偏离了竖直方向θ=30°角.求风对小球的作用力和绳子的拉力.
8.物体受到两个方向相反的力的作用, F1=8N, F2=10N, 当F2由10N逐渐减小到零的过程中, 这两个力的合力的大小变化是 ( )
A. 逐渐变小
B. 逐渐增大
C. 先变大后变小
D. 先变小后变大
7.关于共点力,下列说法中正确的是( )
A、作用在一个物体上的两个力,如果大小相等,方向相反,这两力是共点力
B、作用在一个物体上的两个力,如果是一对平衡力,则这两力是共点力
C、作用在一个物体的几个力,如果它们的作用点在同一点上,则这几个力是共点力
D、作用在一个物体的几个力,如果它们力的作用线汇交于同一点,则这几个力是共点力
6.一个物体受到两个力的作用,则 ( )
A.当两个力大小相等时,物体所受合力一定为零
B.当两个力大小相等时,物体所受合力可能为零
C.当两个力中一个较大时,物体所受合力一定与较大的力同方向
D.当两个力互相垂直时,物体所受合力将取最大值
5.有五个力作用于一点O,这五个力的作用情况如图3-4-4所示,构成一个正六边形的两邻边和三条对角线。已知F3=10N。则这五个力的合力大小为________。
4.作用在某物体上同一点的两个力F1=40N,F2=30N.当两个力的夹角为____时,两力的合力最大,其最大值是_______N;当两力的夹角为_______时两力的合力最小,其最小值是________N;当两个力互相垂直时合力的大小是________N,合力的方向为_______(用与F1的夹角表示)
3. 有两个大小不变的共点力,它们的合力的大小F合随两力夹角α变化的情况如图3-4-3所示,则两力的大小分别为_______和 .
2. 力的合成遵循力的________________, 求两个力的合力时,用力的图示法作出以这两个力的线段为_______的平行四边形的对角线,则对角线的长度和方向表示____________________.
1.如果一个力的效果跟几个力共同产生效果_____,这个力叫做那几个力的______,求几个力的合力叫做___________.
4、 合力随两分力间的夹角的增大而减小,合力的变化范围是在两分力之和与两分力之差之间,即│F1-F2│≤F≤│F1+F2│
[范例精析]
例1在做“探究求合力的方法”的实验中,只用一个弹簧秤来代替钩码也可以完成这个实验,下面用单个弹簧秤完成实验的说法中,正确的是 ( )
A.把两条细线中的一条与弹簧秤连接,然后同时拉动这两条细线,使橡皮条一端伸长到O点位置,读出秤的示数Fl和F2的值
B.把两条细线中的一条与弹簧秤连接,然后同时拉动这两条细线,使橡皮条的一端伸长到O点,读出弹簧秤的示数F1;放回橡皮条,再将弹簧秤连接到另一根细线上,再同时拉这两条细线,使橡皮条再伸长到O点,读出秤的示数F2
C.用弹簧秤连接一条细线拉橡皮条,使它的一端伸长到O点,读出Fl;再换另一条细线与弹簧秤连接拉橡皮条,使它的一端仍然伸长到O点,读出F2
D.把两根细线中的一条细线与弹簧秤连接,然后同时拉这两条细线,使橡皮条的一端伸长到O点,记下两细线的方向及秤的示数Fl;放回橡皮条后,将弹簧秤连接到另一根细线上,再同时拉这两条细线,使橡皮条一端伸长到O点,并使两条细线位于记录下来的方向上,读出弹簧秤的读数为F2.
解析:本实验是用橡皮条的伸长来显示力的作用效果,相同的作用效果应该是使橡皮条沿相同的方向伸长相同的长度。用一只弹簧秤实验,与用两只弹簧秤完成该实验基本步骤相同,但必须保证效果相同,同时能完整地作出平行四边形进行比较.答案:D
拓展:本实验要研究合力和分力的关系,把第一次两个弹簧测力计的拉力F1和F2看作与第二次一个弹簧测力计拉力F单独作用的效果相同时,F1、F2和F才构成分力和合力的关系,在这个实验中,用橡皮条在拉力作用下发生的形变来反映力的作用效果,这个形变包括伸长量和伸长方向两项,伸长量反映橡皮条所受合力的大小,伸长方向反映橡皮条所受合力的方向,仅用其中的一项不能完整表示力的作用效果.
例如.关于“探究求合力的方法”实验,下列说法正确的是 ( )
A.两串钩码的拉力与某一串钩码的拉力作用效果相同
B.实验中不必记录两分力的夹角
C.实验中必须记录两分力的方向
D.实验中必须记录橡皮条端点最终被拉到的位置
(答案:ACD)
例2.力F1=45N,方向水平向东。力F2=60N,方向水平向北,用作图法求解合力F的大小和方向。
解析
选择某一标度,利用1.0cm的长度表示15N的力,作出力的平行四边形,如图3-4-1所示,表示F1的线段长3.0㎝,表示F2的线段长4.0㎝。用刻度尺量出对角线的长度L为5.0㎝,利用F= ,N=75N求出,用量角器可量出合力的方向为东偏北53°。
拓展:
涉及方向问题的共点力合成时,表示的方向应该与地图册的方向一致。
用图解法求合力时,选用的标度不能太小,标度太小会导致误差增大。
例3。下列关于合力的叙述中正确的是 ( )
A.合力是原来几个力的等效代替,合力的作用效果与分力的共同作用效果相同
B.两个力夹角为θ(0≤θ≤π),它们的合力随θ增大而增大
C.合力的大小总不会比分力的代数和大
D.不是同时作用在同一物体上的力也能进行力的合成的运算
解析:力的合成基本出发点是力的等效代替.合力是它的所有分力的一种等效力,它们之间是等效代替关系。合力和作用在物体上各分力间的关系,在效果上是和各分力的共同作用等效,而不是与一个分力等效.因此只有同时作用在同一物体上的力才能进行力的合成的运算。就合力与诸分力中的一个分力的大小相比较,则合力的大小可以大于、等于或小于分力.这是因为力是矢量,力的合成遵循平行四边形定则,合力的大小不仅跟分力的大小有关,而且跟分力的方向有关.根据力的平行四边形定则和数学知识可知, 两个力夹角为θ(0≤θ≤π),它们的合力随θ增大而减小, θ=0°时, 合力最大, 为两分力的代数和;θ=180°时, 合力大小最小, 等于两分力代数差, 所以合力的大小总不会比分力的代数和大.正确解答 AC
拓展:只有同时作用在同一物体上的几个力才存在着等效的合力.求解多个力的合力时,可以先把任意两个力合成,再把合力与第三个力合成,直到把所有力都合成进去。例如:三个方向互成120°角的力,F1=12N方向向东,F2=15N方向南偏西,F3=15N,方向西偏北。求这三个力的合力时可先把F2与 F3合成,它们 的合力为15N,方向向西,再与F1合成,所以三个力的合力等于3N,方向向西。如图3-4-2所示。
[能力训练]