(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
2004年普通高等学校招生全国统一考试
数学答案(文史类)(福建卷)
(1)A (2)C (3)D (4)B (5)A (6)B
(7)C (8)B (9)C (10)D (11)C (12)B
已知f(x)=在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(22)(本小题满分14分)
如图,P是抛物线C:y=x2上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C相交于另一点Q.
(Ⅰ)当点P的横坐标为2时,求直线l的方程;
(Ⅱ)当点P在抛物线C上移动时,求线段PQ中点M的轨迹方程,并求点M到x轴的最短距离.
某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+)万元(n为正整数).
(Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式;
(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
(21)(本小题满分12分)
(Ⅱ)求二面角N―CM―B的大小;
(Ⅲ)求点B到平面SCM的距离.
(20)(本小题满分12分)
在三棱锥S―ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M为AB的中点.
(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.
(18)(本小题满分12分)
甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)分别求甲、乙两人考试合格的概率;
(Ⅱ)求甲、乙两人至少有一人考试合格的概率.
(19)(本小题满分12分)
(Ⅰ)若f(x)=1-且x∈[-,],求x;
设函数f(x)=a?b,其中向量a=(2cosx,1),b=(cosx,sin2x),x∈R.