摘要:6.如下图.有一张直角三角形纸片.两直角边AC=4.BC=8.将△ABC折叠.点B与点A重合.折痕为DE.则CD的长为.
网址:http://m.1010jiajiao.com/timu_id_744827[举报]
小宇手里有一张直角三角形纸片ABC,他无意中将直角边AC折叠了一下,恰好使AC落在斜边AB上,且C点与E点重合,(如图)小宇经过测量得知两直角边AC=6cm,BC=8cm,他想用所学知识求出CD的长,你能帮他吗?
现有一张矩形纸片,只用双手,不借助其他工具,你能将直角三等分吗?
小华是按以下步骤折叠的.
第一步:先把矩形对折,设折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为H,得Rt△AHE;
第三步:沿EH线折叠,得折痕EF,如图(2)所示,此时,小华说“AE,AH就是∠BAD的三等分线”,你认为对吗?
若对,请证明这个结论;若不对,请说明理由.
将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明. 查看习题详情和答案>>
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明. 查看习题详情和答案>>
取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得 Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.
探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=-
x2 有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求
的值.
查看习题详情和答案>>
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得 Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.
探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=-
1 |
8 |
②当EF与抛物线只有一个公共点时,设A′(x,y),求
x |
y |
如图①,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在轴的正半轴上,点C在轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标;
(2)如图②,若AE上有一动点P(不与A、E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒,过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间之间的函数关系式;当取何值时,S有最大值?最大值是多少?
(3)在(2)的条件下,当为何值时,以A、M、E为顶点的三角形为等腰三角形,并求出相应时刻点M的坐标.