题目内容

将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.精英家教网
分析:做此题要理解翻折变换后相等的条件,同时利用常用的全等三角形的判定方法来判定其全等.
解答:证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,
∴∠D+∠B=90°,
∴AB⊥DE.(3分)

(2)∵AB⊥DE,AC⊥BD
∴∠BPD=∠ACB=90°,
∴在△ABC和△DBP,
∠A=∠D
∠ACB=∠DPB
BC=BP

∴△ABC≌△DBP(AAS).(8分)
说明:图中与此条件有关的全等三角形还有如下几对:
△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.
点评:此题考查了翻折变换及全等三角形的判定方法等知识点,常用的判定方法有SSS、SAS、AAS、HL等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网