摘要:3.如图.图中所有三角形的个数为A.2个 B.3个 C.4个 D.5个
网址:http://m.1010jiajiao.com/timu_id_674070[举报]
如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当x=-
时,y最大(小)值=
.)
查看习题详情和答案>>
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当x=-
b |
2a |
4ac-b2 |
4a |
如图,在平面直角坐标系中,以点M(0,
)为圆心,以2
为半径作⊙M交x轴于A、B两点,交y轴的负半轴于点C,连接AM、AC、AD.
(1)设L是过点A的直线,它与⊙M相交于点N,若△ACN是等腰三角形,则满中条件的直线L有几条试写出所有满足条件的L的解析式,并在图②中画出直线L.(如果不止一条,则可以用L1、L2、L3,…表示);
(2)在(1)的条件下,若直线L是某个一次函数的图象,它与y轴交于点S,连接MN,并且不再连接其它点,问是否存在一个三角形,使它总与△MSN相似,证明你的结论;
(3)在(2)的条件下求线段SM的长.
查看习题详情和答案>>
3 |
3 |
(1)设L是过点A的直线,它与⊙M相交于点N,若△ACN是等腰三角形,则满中条件的直线L有几条试写出所有满足条件的L的解析式,并在图②中画出直线L.(如果不止一条,则可以用L1、L2、L3,…表示);
(2)在(1)的条件下,若直线L是某个一次函数的图象,它与y轴交于点S,连接MN,并且不再连接其它点,问是否存在一个三角形,使它总与△MSN相似,证明你的结论;
(3)在(2)的条件下求线段SM的长.
查看习题详情和答案>>
如图,在平面直角坐标系中,x 轴上有两点A(-2,0),B(2,0),以AB为边在x轴上方作正方形ABCD,点E 是AD边的中点,F 是x轴上一动点,连接EF,过点E作EG⊥EF,交BC所在的直线与点G,连接FG.
(1)当点F与点A重合时,易得
=
;若点F与点A不重合时,试问
的值是否改变?直接写出正确判断;
(2)设点F的横坐标为x(-2<x<2),△FBG的面积为S,求S关于x的函数关系式,并求出S的最大值;
(3)当点F在 x轴上运动时,判断有几个位置能够使得以点G为顶点三角形和以点B、F、G为顶点的三角形全等?直接写出相应的点F的坐标. 查看习题详情和答案>>
(1)当点F与点A重合时,易得
EF |
EG |
1 |
2 |
EF |
EG |
(2)设点F的横坐标为x(-2<x<2),△FBG的面积为S,求S关于x的函数关系式,并求出S的最大值;
(3)当点F在 x轴上运动时,判断有几个位置能够使得以点G为顶点三角形和以点B、F、G为顶点的三角形全等?直接写出相应的点F的坐标. 查看习题详情和答案>>