摘要:知.
网址:http://m.1010jiajiao.com/timu_id_516692[举报]
(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.
(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.
(1)选修4-2:矩阵与变换
已知矩阵M=(
)的两^E值分别为λ1=-1和λ2=4.
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
,
(a为餓),曲线D的鍵标方程为ρsin(θ-
)=-
.
(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
+
≥a+b;
(II)利用(I)的结论求函数y=
+
(0<x<1)的最小值.
查看习题详情和答案>>
已知矩阵M=(
|
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
|
(a为餓),曲线D的鍵标方程为ρsin(θ-
π |
4 |
3
| ||
2 |
(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
a2 |
b |
b2 |
a |
(II)利用(I)的结论求函数y=
(1-x)2 |
x |
x2 |
1-x |
(1)已知
=(2x-y+1,x+y-2),
=(2,-2),①当x、y为何值时,
与
共线?②是否存在实数x、y,使得
⊥
,且|
|=|
|?若存在,求出xy的值;若不存在,说明理由.
(2)设
和
是两个单位向量,其夹角是90°,
=
+2
,
=-3
+
,若(k
-
)⊥(
+k
),求实数k的值.
查看习题详情和答案>>
a |
b |
a |
b |
a |
b |
a |
b |
(2)设
i |
j |
a |
i |
j |
b |
i |
j |
a |
b |
a |
b |
(1)选修4-4:矩阵与变换
已知曲线C1:y=
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;
(II)若矩阵M2=
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.
查看习题详情和答案>>
已知曲线C1:y=
1 |
x |
(I)求由曲线C1变换到曲线C2对应的矩阵M1;
(II)若矩阵M2=
|
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
|
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.