ÌâÄ¿ÄÚÈÝ
£¨1£©Ñ¡ÐÞ4-4£º¾ØÕóÓë±ä»»
ÒÑÖªÇúÏßC1£ºy=
ÈÆÔµãÄæʱÕëÐýת45¡ãºó¿ÉµÃµ½ÇúÏßC2£ºy2-x2=2£¬
£¨I£©ÇóÓÉÇúÏßC1±ä»»µ½ÇúÏßC2¶ÔÓ¦µÄ¾ØÕóM1£»
£¨II£©Èô¾ØÕóM2=
£¬ÇóÇúÏßC1ÒÀ´Î¾¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2±ä»»ºóµÃµ½µÄÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È+¦Ñsin¦È-1=0£®ÒÔ¼«µãΪƽÃæÖ±½Ç×ø±êϵµÄԵ㣬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔÚÇúÏßC£º
£¨¦ÈΪ²ÎÊý£©ÉÏÇóÒ»µã£¬Ê¹Ëüµ½Ö±ÏßlµÄ¾àÀë×îС£¬²¢Çó³ö¸Ãµã×ø±êºÍ×îС¾àÀ룮
£¨3£©£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
½«12cm³¤µÄϸÌúÏ߽سÉÈýÌõ³¤¶È·Ö±ðΪa¡¢b¡¢cµÄÏ߶Σ¬
£¨I£©ÇóÒÔa¡¢b¡¢cΪ³¤¡¢¿í¡¢¸ßµÄ³¤·½ÌåµÄÌå»ýµÄ×î´óÖµ£»
£¨II£©ÈôÕâÈýÌõÏ߶ηֱðΧ³ÉÈý¸öÕýÈý½ÇÐΣ¬ÇóÕâÈý¸öÕýÈý½ÇÐÎÃæ»ýºÍµÄ×îСֵ£®
ÒÑÖªÇúÏßC1£ºy=
1 |
x |
£¨I£©ÇóÓÉÇúÏßC1±ä»»µ½ÇúÏßC2¶ÔÓ¦µÄ¾ØÕóM1£»
£¨II£©Èô¾ØÕóM2=
|
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È+¦Ñsin¦È-1=0£®ÒÔ¼«µãΪƽÃæÖ±½Ç×ø±êϵµÄԵ㣬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔÚÇúÏßC£º
|
£¨3£©£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
½«12cm³¤µÄϸÌúÏ߽سÉÈýÌõ³¤¶È·Ö±ðΪa¡¢b¡¢cµÄÏ߶Σ¬
£¨I£©ÇóÒÔa¡¢b¡¢cΪ³¤¡¢¿í¡¢¸ßµÄ³¤·½ÌåµÄÌå»ýµÄ×î´óÖµ£»
£¨II£©ÈôÕâÈýÌõÏ߶ηֱðΧ³ÉÈý¸öÕýÈý½ÇÐΣ¬ÇóÕâÈý¸öÕýÈý½ÇÐÎÃæ»ýºÍµÄ×îСֵ£®
·ÖÎö£º£¨1£©£¨I£©ÒòΪ°ÑÇúÏßC1ÄæʱÕëÐýת¦È½Ç£¬µÃµ½ÇúÏßC2£¬ÔòÐýת±ä»»¾ØÕóΪM1=
£®
£¨II£©ÏÈÇó³öÒÀ´Î¾¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2¶ÔÓ¦µÄ¾ØÕó£¬ÔÙÉèÇúÏßC1ÉÏÈÎÒ»µã¾¹ý±ä»»ºóµÄ¶ÔÓ¦µã×ø±ê£¬Óñ任ºóµÄ×ø±ê±íʾ±ä»»Ç°µÄ×ø±ê£¬ÔÙ´úÈë±ä»»Ç°ÇúÏßÂú×ãµÄ·½³Ì£¬»¯¼ò¼´µÃ±ä»»ºóµÄÇúÏß·½³Ì£®
£¨2£©ÏÈÓÉÖ±ÏßlµÄ¼«×ø±ê·½³ÌÇó³öÖ±½Ç×ø±ê·½³Ì£¬Éè³öÇúÏßCÉÏÈÎÒâÒ»µãP×ø±ê£¬Óõ㵽ֱÏߵľàÀ빫ʽÇó³öµãPµ½Ö±ÏßlµÄ¾àÀ룬ÔÙ½èÖú»ù±¾ÕýÏÒº¯ÊýµÄ×îÖµÇó³öµãPµ½Ö±ÏßlµÄ×îС¾àÀ룮
£¨3£©£¨I£©ÒòΪ³¤·½ÌåµÄÌå»ýΪabc£¬¶øa+b+c=12£¬Ó¦Óò»µÈʽabc¡Ü(
)3£¬¾Í¿ÉÇó³öÌå»ýµÄ×î´óÖµ£®
£¨II£©ÏÈ°ÑÈý¸öÕýÈý½ÇÐεÄÃæ»ýºÍÓÃS=
(l2+m2+n2)±íʾ£¬ÒòΪl+m+n=4£¬¶ø£¨l2+m2+n2£©£¨12+12+12£©¡Ý£¨l+m+n£©2£¬ËùÒÔÖ»ÐèÈÃS³Ë3ÔÙ³ý3¼´¿É±äÐγɹ«Ê½µÄÐÎʽ£¬Çó³ö×îÖµ£®
|
£¨II£©ÏÈÇó³öÒÀ´Î¾¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2¶ÔÓ¦µÄ¾ØÕó£¬ÔÙÉèÇúÏßC1ÉÏÈÎÒ»µã¾¹ý±ä»»ºóµÄ¶ÔÓ¦µã×ø±ê£¬Óñ任ºóµÄ×ø±ê±íʾ±ä»»Ç°µÄ×ø±ê£¬ÔÙ´úÈë±ä»»Ç°ÇúÏßÂú×ãµÄ·½³Ì£¬»¯¼ò¼´µÃ±ä»»ºóµÄÇúÏß·½³Ì£®
£¨2£©ÏÈÓÉÖ±ÏßlµÄ¼«×ø±ê·½³ÌÇó³öÖ±½Ç×ø±ê·½³Ì£¬Éè³öÇúÏßCÉÏÈÎÒâÒ»µãP×ø±ê£¬Óõ㵽ֱÏߵľàÀ빫ʽÇó³öµãPµ½Ö±ÏßlµÄ¾àÀ룬ÔÙ½èÖú»ù±¾ÕýÏÒº¯ÊýµÄ×îÖµÇó³öµãPµ½Ö±ÏßlµÄ×îС¾àÀ룮
£¨3£©£¨I£©ÒòΪ³¤·½ÌåµÄÌå»ýΪabc£¬¶øa+b+c=12£¬Ó¦Óò»µÈʽabc¡Ü(
a+b+c |
3 |
£¨II£©ÏÈ°ÑÈý¸öÕýÈý½ÇÐεÄÃæ»ýºÍÓÃS=
| ||
4 |
½â´ð£º½â£º£¨1£©£¨I£©¡ßÇúÏßC1£ºy=
ÈÆÔµãÄæʱÕëÐýת45¡ãºóµÃµ½ÇúÏßC2£ºy2-x2=2£¬¡àÐýת±ä»»¾ØÕóM1=
=
£»
£¨II£©ÉèÒÀ´Î¾¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2¶ÔÓ¦µÄ¾ØÕóM=M2M1=
•
=
ÈÎÈ¡ÇúÏßC1£ºy=
ÉϵÄÒ»µãP£¨x£¬y£©£¬ËüÔڱ任TM×÷ÓÃϱä³ÉµãP¡ä£¨x¡ä£¬y¡ä£©£¬ÔòÓÐ
=M
£¬¼´
£¬¡à
ÓÖÒòΪµãPÔÚC1£ºy=
ÉÏ£¬µÃµ½
2-
2=1¼´
2-
2=1£®
£¨2£©¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È+¦Ñsin¦È-1=0£¬¡àÖ±½Ç×ø±ê·½³ÌÊÇx+y-1=0
ÉèËùÇóµÄµãΪP£¨-1+cos¦È£¬sin¦È£©£¬ÔòPµ½Ö±ÏßlµÄ¾àÀëd=
=|sin(¦È+
)-
|
µ±¦È+
=2k¦Ð+
£¬k¡ÊZʱ£¬¼´¦È=2k¦Ð+
£¬k¡ÊZ£¬dµÄ×îСֵΪ
-1´ËʱP(-1+
£¬
)
£¨3£©£¨I£©ÓÉÒÑÖªµÃ£¬a+b+c=12£¬¡àV=abc¡Ü(
)3=64£»
µ±ÇÒ½öµ±a=b=c=4ʱ£¬µÈºÅ³ÉÁ¢£®
£¨II£©ÉèÈý¸öÕýÈý½ÇÐεı߳¤·Ö±ðΪl£¬m£¬n£¬Ôòl+m+n=4
¡àÕâÈý¸öÕýÈý½ÇÐÎÃæ»ýºÍΪS=
(l2+m2+n2)
¡à3S=
(l2+m2+n2)(12+12+12)¡Ý
(l+m+n)2=4
¡àS¡Ý
µ±ÇÒ½öµ±a=b=c=1ʱ£¬µÈºÅ³ÉÁ¢£®
1 |
x |
|
|
£¨II£©ÉèÒÀ´Î¾¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2¶ÔÓ¦µÄ¾ØÕóM=M2M1=
|
|
|
ÈÎÈ¡ÇúÏßC1£ºy=
1 |
x |
|
|
|
|
ÓÖÒòΪµãPÔÚC1£ºy=
1 |
x |
y¡ä |
18 |
x¡ä |
8 |
y |
18 |
x |
8 |
£¨2£©¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È+¦Ñsin¦È-1=0£¬¡àÖ±½Ç×ø±ê·½³ÌÊÇx+y-1=0
ÉèËùÇóµÄµãΪP£¨-1+cos¦È£¬sin¦È£©£¬ÔòPµ½Ö±ÏßlµÄ¾àÀëd=
|-1+cos¦È+sin¦È-1| | ||
|
¦Ð |
4 |
2 |
µ±¦È+
¦Ð |
4 |
¦Ð |
2 |
¦Ð |
4 |
2 |
| ||
2 |
| ||
2 |
£¨3£©£¨I£©ÓÉÒÑÖªµÃ£¬a+b+c=12£¬¡àV=abc¡Ü(
a+b+c |
3 |
µ±ÇÒ½öµ±a=b=c=4ʱ£¬µÈºÅ³ÉÁ¢£®
£¨II£©ÉèÈý¸öÕýÈý½ÇÐεı߳¤·Ö±ðΪl£¬m£¬n£¬Ôòl+m+n=4
¡àÕâÈý¸öÕýÈý½ÇÐÎÃæ»ýºÍΪS=
| ||
4 |
¡à3S=
| ||
4 |
| ||
4 |
3 |
¡àS¡Ý
4
| ||
3 |
µ±ÇÒ½öµ±a=b=c=1ʱ£¬µÈºÅ³ÉÁ¢£®
µãÆÀ£º±¾Ì⣨1£©Ö÷Òª¿¼²éÁËÇúÏßµÄÐýת±ä»»¾ØÕóµÄÇó·¨ÒÔ¼°¸ù¾ÝÐýת±ä»»ÇóÇúÏß·½³Ì£¬£¨2£©¿¼²éÁ˼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»»£¬£¨3£©¿¼²éÁ˾ùÖµ²»µÈʽºÍ¿ÂÎ÷²»µÈʽµÄÓ¦Óã®
![](http://thumb.zyjl.cn/images/loading.gif)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿