摘要:⑵曲线和方程的关系.实质上是曲线上任一点其坐标与方程的一种关系.曲线上任一点是方程的解,反过来.满足方程的解所对应的点是曲线上的点.注:如果曲线C的方程是f=0.那么点P0(x0 ,y)线C上的充要条件是f(x0 ,y0)=0
网址:http://m.1010jiajiao.com/timu_id_490662[举报]
已知离心率为
的椭圆C1的顶点A1,A2恰好是双曲线
-y2=1的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2.
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3. 查看习题详情和答案>>
| ||
2 |
x2 |
3 |
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1 |
2 |
4
| ||
5 |
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3. 查看习题详情和答案>>
已知离心率为
的椭圆C1的顶点A1,A2恰好是双曲线
-y2=1的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2.
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.
查看习题详情和答案>>
| ||
2 |
x2 |
3 |
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1 |
2 |
4
| ||
5 |
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.
(本小题满分14分)在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中且.设.
(I)若,,,求方程在区间内的解集;
(II)若点是曲线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;
(III)根据本题条件我们可以知道,函数的性质取决于变量、和的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在处取得最小值”.【说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.】
查看习题详情和答案>>