ÌâÄ¿ÄÚÈÝ
ÒÑÖªÀëÐÄÂÊΪµÄÍÖÔ²C1µÄ¶¥µãA1£¬A2Ç¡ºÃÊÇË«ÇúÏßµÄ×óÓÒ½¹µã£¬µãPÊÇÍÖÔ²Éϲ»Í¬ÓÚA1£¬A2µÄÈÎÒâÒ»µã£¬ÉèÖ±ÏßPA1£¬PA2µÄбÂÊ·Ö±ðΪk1£¬k2£®£¨¢ñ£©ÇóÍÖÔ²C1µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÊÔÅжÏk1•k2µÄÖµÊÇ·ñÓëµãPµÄλÖÃÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©µ±Ê±£¬Ô²C2£ºx2+y2-2mx=0±»Ö±ÏßPA2½ØµÃÏÒ³¤Îª£¬ÇóʵÊýmµÄÖµ£®
Éè¼ÆÒâͼ£º¿¼²ìÖ±ÏßÉÏÁ½µãµÄбÂʹ«Ê½¡¢Ö±ÏßÓëÔ²Ïཻ¡¢´¹¾¶¶¨Àí¡¢Ë«ÇúÏßÓëÍÖÔ²µÄ¼¸ºÎÐÔÖʵÈ֪ʶ£¬¿¼²ìѧÉúÓôý¶¨ÏµÊý·¨ÇóÍÖÔ²·½³ÌµÈ½âÎö¼¸ºÎµÄ»ù±¾Ë¼ÏëÓëÔËËãÄÜÁ¦¡¢Ì½¾¿ÄÜÁ¦ºÍÍÆÀíÄÜÁ¦£®µÚ£¨¢ò£©¸Ä±à×ÔÈ˽ÌÉçÑ¡ÐÞ2-1½Ì²ÄP39Àý3£®
¡¾´ð°¸¡¿·ÖÎö£º£¨¢ñ£©ÏÈÀûÓÃÍÖÔ²C1µÄ¶¥µãA1£¬A2Ç¡ºÃÊÇË«ÇúÏßµÄ×óÓÒ½¹µãÇó³ö¶¥µãA1£¬A2µÄ×ø±ê£¬ÔÙÀûÓÃÀëÐÄÂÊΪ¼´¿ÉÇóÍÖÔ²C1µÄ±ê×¼·½³Ì£»
£¨¢ò£©Ö±½ÓÀûÓÃÁ½µã×ø±êÇó³ök1•k2µÄÖµ¼´¿ÉÅжÏk1•k2µÄÖµÊÇ·ñÓëµãPµÄλÖÃÓйأ»
£¨¢ó£©ÏÈÀûÓ㨢ò£©µÄ½áÂÛÇó³öÖ±ÏßPA2µÄ·½³Ì£¬ÔÙÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëÒÔ¼°ÏÒ³¤ºÍ°ë¾¶Ö®¼äµÄ¹Øϵ¼´¿ÉÇóʵÊýmµÄÖµ£®
½â´ð£º½â£º£¨¢ñ£©Ë«ÇúÏßµÄ×óÓÒ½¹µãΪ£¨±2£¬0£©
¼´A1£¬A2µÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©£¬£¨2£¬0£©£®£¨1·Ö£©
ËùÒÔÉèÍÖÔ²C1µÄ±ê×¼·½³ÌΪ£¬Ôòa=2£¬£¨2·Ö£©
ÇÒ=£¬ËùÒÔ£¬´Ó¶øb2=a2-c2=1£¬£¨4·Ö£©
ËùÒÔÍÖÔ²C1µÄ±ê×¼·½³ÌΪ£®£¨5·Ö£©
£¨¢ò£©ÉèP£¨x£¬y£©Ôò£¬¼´=£¨6·Ö£©
==£®£¨8·Ö£©
ËùÒÔk1•k2µÄÖµÓëµãPµÄλÖÃÎ޹أ¬ºãΪ£® £¨9·Ö£©
£¨¢ó£©ÓÉÔ²C2£ºx2+y2-2mx=0µÃ£¨x-m£©2+y2=m2£¬
ÆäÔ²ÐÄΪC2£¨m£¬0£©£¬°ë¾¶Îª|m|£¬£¨10·Ö£©
ÓÉ£¨¢ò£©Öªµ±Ê±£¬£¬
¹ÊÖ±ÏßPA2µÄ·½³ÌΪ¼´x+2y-2=0£¬£¨11·Ö£©
ËùÒÔÔ²ÐÄΪC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀëΪ£¬
ÓÖÓÉÒÑÖªÔ²C2£ºx2+y2-2mx=0±»Ö±ÏßPA2½ØµÃÏÒ³¤Îª¼°´¹¾¶¶¨ÀíµÃ
Ô²ÐÄC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀ룬
ËùÒÔ=£¬¼´m2+m-2=0£¬½âµÃm=-2»òm=1£®£¨13·Ö£©
ËùÒÔʵÊýmµÄֵΪ1»ò-2£®£¨14·Ö£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÉÏÁ½µãµÄбÂʹ«Ê½¡¢Ö±ÏßÓëÔ²Ïཻ¡¢´¹¾¶¶¨Àí¡¢Ë«ÇúÏßÓëÍÖÔ²µÄ¼¸ºÎÐÔÖʵÈ֪ʶ£¬¿¼²éѧÉúÓôý¶¨ÏµÊý·¨ÇóÍÖÔ²·½³ÌµÈ½âÎö¼¸ºÎµÄ»ù±¾Ë¼ÏëÓëÔËËãÄÜÁ¦¡¢Ì½¾¿ÄÜÁ¦ºÍÍÆÀíÄÜÁ¦£®
£¨¢ò£©Ö±½ÓÀûÓÃÁ½µã×ø±êÇó³ök1•k2µÄÖµ¼´¿ÉÅжÏk1•k2µÄÖµÊÇ·ñÓëµãPµÄλÖÃÓйأ»
£¨¢ó£©ÏÈÀûÓ㨢ò£©µÄ½áÂÛÇó³öÖ±ÏßPA2µÄ·½³Ì£¬ÔÙÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëÒÔ¼°ÏÒ³¤ºÍ°ë¾¶Ö®¼äµÄ¹Øϵ¼´¿ÉÇóʵÊýmµÄÖµ£®
½â´ð£º½â£º£¨¢ñ£©Ë«ÇúÏßµÄ×óÓÒ½¹µãΪ£¨±2£¬0£©
¼´A1£¬A2µÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©£¬£¨2£¬0£©£®£¨1·Ö£©
ËùÒÔÉèÍÖÔ²C1µÄ±ê×¼·½³ÌΪ£¬Ôòa=2£¬£¨2·Ö£©
ÇÒ=£¬ËùÒÔ£¬´Ó¶øb2=a2-c2=1£¬£¨4·Ö£©
ËùÒÔÍÖÔ²C1µÄ±ê×¼·½³ÌΪ£®£¨5·Ö£©
£¨¢ò£©ÉèP£¨x£¬y£©Ôò£¬¼´=£¨6·Ö£©
==£®£¨8·Ö£©
ËùÒÔk1•k2µÄÖµÓëµãPµÄλÖÃÎ޹أ¬ºãΪ£® £¨9·Ö£©
£¨¢ó£©ÓÉÔ²C2£ºx2+y2-2mx=0µÃ£¨x-m£©2+y2=m2£¬
ÆäÔ²ÐÄΪC2£¨m£¬0£©£¬°ë¾¶Îª|m|£¬£¨10·Ö£©
ÓÉ£¨¢ò£©Öªµ±Ê±£¬£¬
¹ÊÖ±ÏßPA2µÄ·½³ÌΪ¼´x+2y-2=0£¬£¨11·Ö£©
ËùÒÔÔ²ÐÄΪC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀëΪ£¬
ÓÖÓÉÒÑÖªÔ²C2£ºx2+y2-2mx=0±»Ö±ÏßPA2½ØµÃÏÒ³¤Îª¼°´¹¾¶¶¨ÀíµÃ
Ô²ÐÄC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀ룬
ËùÒÔ=£¬¼´m2+m-2=0£¬½âµÃm=-2»òm=1£®£¨13·Ö£©
ËùÒÔʵÊýmµÄֵΪ1»ò-2£®£¨14·Ö£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÉÏÁ½µãµÄбÂʹ«Ê½¡¢Ö±ÏßÓëÔ²Ïཻ¡¢´¹¾¶¶¨Àí¡¢Ë«ÇúÏßÓëÍÖÔ²µÄ¼¸ºÎÐÔÖʵÈ֪ʶ£¬¿¼²éѧÉúÓôý¶¨ÏµÊý·¨ÇóÍÖÔ²·½³ÌµÈ½âÎö¼¸ºÎµÄ»ù±¾Ë¼ÏëÓëÔËËãÄÜÁ¦¡¢Ì½¾¿ÄÜÁ¦ºÍÍÆÀíÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿