ÌâÄ¿ÄÚÈÝ
ÒÑÖªÀëÐÄÂÊΪ
| ||
2 |
x2 |
3 |
£¨¢ñ£©ÇóÍÖÔ²C1µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÊÔÅжÏk1•k2µÄÖµÊÇ·ñÓëµãPµÄλÖÃÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©µ±k1=
1 |
2 |
4
| ||
5 |
Éè¼ÆÒâͼ£º¿¼²ìÖ±ÏßÉÏÁ½µãµÄбÂʹ«Ê½¡¢Ö±ÏßÓëÔ²Ïཻ¡¢´¹¾¶¶¨Àí¡¢Ë«ÇúÏßÓëÍÖÔ²µÄ¼¸ºÎÐÔÖʵÈ֪ʶ£¬¿¼²ìѧÉúÓôý¶¨ÏµÊý·¨ÇóÍÖÔ²·½³ÌµÈ½âÎö¼¸ºÎµÄ»ù±¾Ë¼ÏëÓëÔËËãÄÜÁ¦¡¢Ì½¾¿ÄÜÁ¦ºÍÍÆÀíÄÜÁ¦£®µÚ£¨¢ò£©¸Ä±à×ÔÈ˽ÌÉçÑ¡ÐÞ2-1½Ì²ÄP39Àý3£®
·ÖÎö£º£¨¢ñ£©ÏÈÀûÓÃÍÖÔ²C1µÄ¶¥µãA1£¬A2Ç¡ºÃÊÇË«ÇúÏß
-y2=1µÄ×óÓÒ½¹µãÇó³ö¶¥µãA1£¬A2µÄ×ø±ê£¬ÔÙÀûÓÃÀëÐÄÂÊΪ
¼´¿ÉÇóÍÖÔ²C1µÄ±ê×¼·½³Ì£»
£¨¢ò£©Ö±½ÓÀûÓÃÁ½µã×ø±êÇó³ök1•k2µÄÖµ¼´¿ÉÅжÏk1•k2µÄÖµÊÇ·ñÓëµãPµÄλÖÃÓйأ»
£¨¢ó£©ÏÈÀûÓ㨢ò£©µÄ½áÂÛÇó³öÖ±ÏßPA2µÄ·½³Ì£¬ÔÙÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëÒÔ¼°ÏÒ³¤ºÍ°ë¾¶Ö®¼äµÄ¹Øϵ¼´¿ÉÇóʵÊýmµÄÖµ£®
x2 |
3 |
| ||
2 |
£¨¢ò£©Ö±½ÓÀûÓÃÁ½µã×ø±êÇó³ök1•k2µÄÖµ¼´¿ÉÅжÏk1•k2µÄÖµÊÇ·ñÓëµãPµÄλÖÃÓйأ»
£¨¢ó£©ÏÈÀûÓ㨢ò£©µÄ½áÂÛÇó³öÖ±ÏßPA2µÄ·½³Ì£¬ÔÙÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëÒÔ¼°ÏÒ³¤ºÍ°ë¾¶Ö®¼äµÄ¹Øϵ¼´¿ÉÇóʵÊýmµÄÖµ£®
½â´ð£º½â£º£¨¢ñ£©Ë«ÇúÏß
-y2=1µÄ×óÓÒ½¹µãΪ£¨¡À2£¬0£©
¼´A1£¬A2µÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©£¬£¨2£¬0£©£®£¨1·Ö£©
ËùÒÔÉèÍÖÔ²C1µÄ±ê×¼·½³ÌΪ
+
=1(a£¾b£¾0)£¬Ôòa=2£¬£¨2·Ö£©
ÇÒe=
=
£¬ËùÒÔc=
£¬´Ó¶øb2=a2-c2=1£¬£¨4·Ö£©
ËùÒÔÍÖÔ²C1µÄ±ê×¼·½³ÌΪ
+
=1£®£¨5·Ö£©
£¨¢ò£©ÉèP£¨x0£¬y0£©Ôò
+
=1£¬¼´y02=1-
=
£¨6·Ö£©
k1•k2=
•
=
=-
£®£¨8·Ö£©
ËùÒÔk1•k2µÄÖµÓëµãPµÄλÖÃÎ޹أ¬ºãΪ-
£® £¨9·Ö£©
£¨¢ó£©ÓÉÔ²C2£ºx2+y2-2mx=0µÃ£¨x-m£©2+y2=m2£¬
ÆäÔ²ÐÄΪC2£¨m£¬0£©£¬°ë¾¶Îª|m|£¬£¨10·Ö£©
ÓÉ£¨¢ò£©Öªµ±k1=
ʱ£¬k2=-
£¬
¹ÊÖ±ÏßPA2µÄ·½³ÌΪy=-
(x-2)¼´x+2y-2=0£¬£¨11·Ö£©
ËùÒÔÔ²ÐÄΪC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀëΪd=
=
£¬
ÓÖÓÉÒÑÖªÔ²C2£ºx2+y2-2mx=0±»Ö±ÏßPA2½ØµÃÏÒ³¤Îª
¼°´¹¾¶¶¨ÀíµÃ
Ô²ÐÄC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀëd=
£¬
ËùÒÔ
=
£¬¼´m2+m-2=0£¬½âµÃm=-2»òm=1£®£¨13·Ö£©
ËùÒÔʵÊýmµÄֵΪ1»ò-2£®£¨14·Ö£©£®
x2 |
3 |
¼´A1£¬A2µÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©£¬£¨2£¬0£©£®£¨1·Ö£©
ËùÒÔÉèÍÖÔ²C1µÄ±ê×¼·½³ÌΪ
x2 |
a2 |
y2 |
b2 |
ÇÒe=
c |
a |
| ||
2 |
3 |
ËùÒÔÍÖÔ²C1µÄ±ê×¼·½³ÌΪ
x2 |
4 |
y2 |
1 |
£¨¢ò£©ÉèP£¨x0£¬y0£©Ôò
x02 |
4 |
y02 |
1 |
x02 |
4 |
4-x02 |
4 |
k1•k2=
y0-0 |
x0-(-2) |
y0-0 |
x0-2 |
y02 |
x02-4 |
1 |
4 |
ËùÒÔk1•k2µÄÖµÓëµãPµÄλÖÃÎ޹أ¬ºãΪ-
1 |
4 |
£¨¢ó£©ÓÉÔ²C2£ºx2+y2-2mx=0µÃ£¨x-m£©2+y2=m2£¬
ÆäÔ²ÐÄΪC2£¨m£¬0£©£¬°ë¾¶Îª|m|£¬£¨10·Ö£©
ÓÉ£¨¢ò£©Öªµ±k1=
1 |
2 |
1 |
2 |
¹ÊÖ±ÏßPA2µÄ·½³ÌΪy=-
1 |
2 |
ËùÒÔÔ²ÐÄΪC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀëΪd=
|m+2¡Á0-2| | ||
|
|m-2| | ||
|
ÓÖÓÉÒÑÖªÔ²C2£ºx2+y2-2mx=0±»Ö±ÏßPA2½ØµÃÏÒ³¤Îª
4
| ||
5 |
Ô²ÐÄC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀëd=
m2-(
|
ËùÒÔ
m2-(
|
|m-2| | ||
|
ËùÒÔʵÊýmµÄֵΪ1»ò-2£®£¨14·Ö£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÉÏÁ½µãµÄбÂʹ«Ê½¡¢Ö±ÏßÓëÔ²Ïཻ¡¢´¹¾¶¶¨Àí¡¢Ë«ÇúÏßÓëÍÖÔ²µÄ¼¸ºÎÐÔÖʵÈ֪ʶ£¬¿¼²éѧÉúÓôý¶¨ÏµÊý·¨ÇóÍÖÔ²·½³ÌµÈ½âÎö¼¸ºÎµÄ»ù±¾Ë¼ÏëÓëÔËËãÄÜÁ¦¡¢Ì½¾¿ÄÜÁ¦ºÍÍÆÀíÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿