摘要: 判断函数单调性作差法:对带根号的一定要分子有理化.例如: 在进行讨论.
网址:http://m.1010jiajiao.com/timu_id_490204[举报]
(本小题满分12分)已知函数是定义在上的奇函数,且,
(1)确定函数的解析式;
(2)用定义证明在上是增函数;
(3)解不等式.
【解析】第一问利用函数的奇函数性质可知f(0)=0
结合条件,解得函数解析式
第二问中,利用函数单调性的定义,作差变形,定号,证明。
第三问中,结合第二问中的单调性,可知要是原式有意义的利用变量大,则函数值大的关系得到结论。
查看习题详情和答案>>
函数是定义在上的奇函数,且。
(1)求实数a,b,并确定函数的解析式;
(2)判断在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数是定义在上的奇函数,且。
解得,
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为,并由此得到当,x=-1时,,当x=1时,
解:(1)是奇函数,。
即,,………………2分
,又,,,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为…………………………………………10分
当,x=-1时,,当x=1时,。
查看习题详情和答案>>
已知函数f(x)=
+a是奇函数.
(1)求实数a的值;
(2)判断函数在R上的单调性并用函数单调性的定义证明;
(3)对任意的实数x,不等式f(x)>2m-1恒成立,求实数m的取值范围.
查看习题详情和答案>>
2x | 2x+1 |
(1)求实数a的值;
(2)判断函数在R上的单调性并用函数单调性的定义证明;
(3)对任意的实数x,不等式f(x)>2m-1恒成立,求实数m的取值范围.