摘要:(与重合舍去).
网址:http://m.1010jiajiao.com/timu_id_474874[举报]
如图,在平面直角坐标系中,以O为圆心,以
的长为半径作⊙O交x轴于P、Q两点,交y轴于G、H两点,△ABC内接于⊙O,且BC∥x轴交y轴于D,∠BAC=45°(如图1).
(1)求C点坐标;
(2)若点A在x轴上方的半圆上运动(不与G重合),且CA的延长线交y轴于M,AB交y轴于N(如图2),当A点运动时,ON•OM的值是否发生变化?若变化,说明理由;若不变,求出其值;
(3)若点A在⊙O上运动(不与B、C重合),是否存在点A,使△ABC为等腰三角形?若存在,请求出A点坐标;若不存在,请说明理由.
查看习题详情和答案>>
| 2 |
(1)求C点坐标;
(2)若点A在x轴上方的半圆上运动(不与G重合),且CA的延长线交y轴于M,AB交y轴于N(如图2),当A点运动时,ON•OM的值是否发生变化?若变化,说明理由;若不变,求出其值;
(3)若点A在⊙O上运动(不与B、C重合),是否存在点A,使△ABC为等腰三角形?若存在,请求出A点坐标;若不存在,请说明理由.
如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
查看习题详情和答案>>
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
如图,把矩形OABC放置在直角坐标系中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得
到折痕EF.
(1)可以通过 办法,使四边形AEFO变到四边形BEFC的位置(填“平移”、“旋转”或“翻转”);
(2)写出点E在坐标系中的位置即点E的坐标 ;
(3)折痕EF的长为 ;
(4)若直线l把矩形OABC的面积分成相等的两部分,则直线l必经过点 ,写出经过这点的任意一条直线的函数关系式 .
查看习题详情和答案>>
(1)可以通过
(2)写出点E在坐标系中的位置即点E的坐标
(3)折痕EF的长为
(4)若直线l把矩形OABC的面积分成相等的两部分,则直线l必经过点