摘要:直线的方程为.与联立得
网址:http://m.1010jiajiao.com/timu_id_471429[举报]
在平面直角坐标系中,曲线与坐标轴的交点都在圆上.
(1)求圆的方程;
(2)若圆与直线交于、两点,且,求的值.
【解析】本试题主要是考查了直线与圆的位置关系的运用。
(1)曲线与轴的交点为(0,1),
与轴的交点为(3+2,0),(3-2,0) 故可设的圆心为(3,t),则有32+(t-1)2=(2)2+t2,解得t=1.
(2)因为圆与直线交于、两点,且。联立方程组得到结论。
查看习题详情和答案>>
如图,分别是椭圆:+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°.
(Ⅰ)求椭圆的离心率;
(Ⅱ)已知△的面积为40,求的值.
【解析】 (Ⅰ)由题=60°,则,即椭圆的离心率为。
(Ⅱ)因△的面积为40,设,又面积公式,又直线,
又由(Ⅰ)知,联立方程可得,整理得,解得,,所以,解得。
查看习题详情和答案>>
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由。
【解析】本试题主要是考查了椭圆方程的求解,待定系数法求解,并且考查了圆与椭圆的位置关系的研究,利用恒有交点,联立方程组和韦达定理一起表示向量OA,OB,并证明垂直。
查看习题详情和答案>>