题目内容
设椭圆E: (a,b>0)过M(2,
)
,N(
,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由。
【解析】本试题主要是考查了椭圆方程的求解,待定系数法求解,并且考查了圆与椭圆的位置关系的研究,利用恒有交点,联立方程组和韦达定理一起表示向量OA,OB,并证明垂直。
【答案】
解:(1)因为椭圆E: (a,b>0)过M(2,
) ,N(
,1)两点,
所以解得
所以
椭圆E的方程为
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为
解方程组
得
,即
,
则△=,即
,
要使
,需使
,即
,所以
,所以
又
,所以
,所以
,即
或
,因为直线
为圆心在原点的圆的一条切线,所以圆的半径为
,
,
,所求的圆为
,此时圆的切线
都满足
或
,而当切线的斜率不存在时切线为
与椭圆
的两个交点为
或
满足
,综上, 存在圆心在原点的圆
,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且

练习册系列答案
相关题目