网址:http://m.1010jiajiao.com/timu_id_467699[举报]
在平面直角坐标系中,曲线与坐标轴的交点都在圆上.
(1)求圆的方程;
(2)若圆与直线交于、两点,且,求的值.
【解析】本试题主要是考查了直线与圆的位置关系的运用。
(1)曲线与轴的交点为(0,1),
与轴的交点为(3+2,0),(3-2,0) 故可设的圆心为(3,t),则有32+(t-1)2=(2)2+t2,解得t=1.
(2)因为圆与直线交于、两点,且。联立方程组得到结论。
查看习题详情和答案>>
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(I)求椭圆的方程;
(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(O为坐标原点),当< 时,求实数的取值范围.
【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。
第一问中,利用
第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的<不等式,表示得到t的范围。
解:(1)由题意知
查看习题详情和答案>>
已知=,= ,=,设是直线上一点,是坐标原点.
⑴求使取最小值时的; ⑵对(1)中的点,求的余弦值.
【解析】第一问中利用设,则根据已知条件,O,M,P三点共线,则可以得到x=2y,然后利用
可知当x=4,y=2时取得最小值。
第二问中利用数量积的性质可以表示夹角的余弦值,进而得到结论。
(1)、因为设则
可知当x=4,y=2时取得最小值。此时。
(2)
查看习题详情和答案>>
已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-的距离为可知-+=.得到a2=4而c=,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-的距离为,∴-+=.
∴a2=4而c=,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知
,
∴……6分
∵A、B在椭圆+y2=1上,
∴……10分
∴l的斜率为=.
∴l的方程为y=(x-),即x-y-=0.
查看习题详情和答案>>