摘要:即. 反之当时.取的中点.连接..
网址:http://m.1010jiajiao.com/timu_id_467662[举报]
如图,三棱锥中,侧面底面, ,且,.(Ⅰ)求证:平面;
(Ⅱ)若为侧棱PB的中点,求直线AE与底面所成角的正弦值.
【解析】第一问中,利用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
解
(Ⅰ) 证明:由用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,
又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=,
由(Ⅰ)已证平面PBC,所以,即,
故,
于是
所以直线AE与底面ABC 所成角的正弦值为
查看习题详情和答案>>
已知椭圆
+y2=1(a≥2),直线l与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.
(Ⅰ)设直线AB与直线OM的斜率分别为k1、k2,且k1•k2=-
,求椭圆的离心率.
(Ⅱ)若直线AB经过椭圆的右焦点F,且四边形OACB是平行四边形,求直线AB斜率的取值范围. 查看习题详情和答案>>
x2 |
a2 |
(Ⅰ)设直线AB与直线OM的斜率分别为k1、k2,且k1•k2=-
1 |
2 |
(Ⅱ)若直线AB经过椭圆的右焦点F,且四边形OACB是平行四边形,求直线AB斜率的取值范围. 查看习题详情和答案>>