摘要:令由此可知
网址:http://m.1010jiajiao.com/timu_id_457953[举报]
已知M、N两点的坐标分别是是常数,令是坐标原点.
(Ⅰ)求函数的解析式,并求函数在上的单调递增区间;
(Ⅱ)当时,的最大值为,求a的值,并说明此时的图象可由函数的图象经过怎样的平移和伸缩变换而得到?
查看习题详情和答案>>已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点().
(1)指出,并求与的关系式();
(2)求()的通项公式,并指出点列,, ,, 向哪一点无限接近?说明理由;
(3)令,数列的前项和为,设,求所有可能的乘积的和.
已知M、N两点的坐标分别是M(1+cos2x,1)、N(1,sin2x+a)(x,a∈R,a是常数),令f(x)=·(O是坐标原点).
(1)求函数f(x)的解析式,并求函数f(x)在[0,π]上的单调递增区间;
(2)当x∈[0,]时,f(x)的最大值为4,求a的值,并说明此时f(x)的图象可由函数y=2sin(x+)的图象经过怎样的平移和伸缩变换而得到.
查看习题详情和答案>>