摘要:(Ⅲ)若问是否存在实数.使得的图象与的图象有且只有两个不同的交点?若存在.求出的值,若不存在.说明理由.
网址:http://m.1010jiajiao.com/timu_id_390789[举报]
若存在实数k,b,使得函数f(x)和g(x)对其定义域上的任意实数x同时满足:f(x)≥kx+b且g(x)≤kx+b,则称直线:l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x2,g(x)=2elnx(其中e为自然对数的底数).试问:
(1)函数f(x)和g(x)的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数f(x)和g(x)是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由.
查看习题详情和答案>>
(1)函数f(x)和g(x)的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数f(x)和g(x)是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由.
若存在实数k,b,使得函数和对其定义域上的任意实数x同时满足:,则称直线:为函数的“隔离直线”。已知(其中e为自然对数的底数)。试问:
(1)函数的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由。
查看习题详情和答案>>