摘要:有解的区域是( )
网址:http://m.1010jiajiao.com/timu_id_389748[举报]
(2006•咸安区模拟)函数f(x)是定义域为R的偶函数,且对任意的x∈R,均有f(x+2)=f(x)成立.当x∈[0,1]时,f(x)=loga(2-x)(a>1).
(1)当x∈[2k-1,2k+1](k∈Z)时,求f(x)的表达式;
(2)若f(x)的最大值为
,解关于x的不等式f(x)>
.
查看习题详情和答案>>
(1)当x∈[2k-1,2k+1](k∈Z)时,求f(x)的表达式;
(2)若f(x)的最大值为
1 |
2 |
1 |
4 |
(理)定义:若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,则称f(x)在D上满足利普希茨(Lipschitz)条件.
(1)试举出一个满足利普希茨(Lipschitz)条件的函数及常数k的值,并加以验证;
(2)若函数f(x)=
在[1,+∞)上满足利普希茨(Lipschitz)条件,求常数k的最小值;
(3)现有函数f(x)=sinx,请找出所有的一次函数g(x),使得下列条件同时成立:
①函数g(x)满足利普希茨(Lipschitz)条件;
②方程g(x)=0的根t也是方程f(
)=
sin(
-
)=-
cos
=-1;
③方程f(g(x))=g(f(x))在区间[0,2π)上有且仅有一解.
查看习题详情和答案>>
(1)试举出一个满足利普希茨(Lipschitz)条件的函数及常数k的值,并加以验证;
(2)若函数f(x)=
x+1 |
(3)现有函数f(x)=sinx,请找出所有的一次函数g(x),使得下列条件同时成立:
①函数g(x)满足利普希茨(Lipschitz)条件;
②方程g(x)=0的根t也是方程f(
3π |
4 |
2 |
3π |
2 |
π |
4 |
2 |
π |
4 |
③方程f(g(x))=g(f(x))在区间[0,2π)上有且仅有一解.
(2010•山东模拟)已知函数f(x)满足xf(x)=b+cf(x),b≠0,f(2)=-1,且f(1-x)=-f(x+1)对两边都有意义的任意 x都成立
(1)求f(x)的解析式及定义域
(2)写出f(x)的单调区间,并用定义证明在各单调区间上是增函数还是减函数?
查看习题详情和答案>>
(1)求f(x)的解析式及定义域
(2)写出f(x)的单调区间,并用定义证明在各单调区间上是增函数还是减函数?
(2012•黄浦区二模)已知函数y=f(x)是定义域为R的偶函数,且对x∈R,恒有f(1+x)=f(1-x).又当x∈[0,1]时,f(x)=x.
(1)当x∈[-1,0]时,求f(x)的解析式;
(2)求证:函数y=f(x)(x∈R)是以T=2为周期的周期函数;
(3)解答本小题考生只需从下列三个问题中选择一个写出结论即可(无需写解题步骤).注意:考生若选择多于一个问题解答,则按分数最低一个问题的解答正确与否给分.
①当x∈[2n-1,2n](n∈Z)时,求f(x)的解析式.
②当x∈[2n-1,2n+1](其中n是给定的正整数)时,若函数y=f(x)的图象与函数y=kx的图象有且仅有两个公共点,求实数k的取值范围.
③当x∈[0,2n](n是给定的正整数且n≥3)时,求f(x)的解析式.
查看习题详情和答案>>
(1)当x∈[-1,0]时,求f(x)的解析式;
(2)求证:函数y=f(x)(x∈R)是以T=2为周期的周期函数;
(3)解答本小题考生只需从下列三个问题中选择一个写出结论即可(无需写解题步骤).注意:考生若选择多于一个问题解答,则按分数最低一个问题的解答正确与否给分.
①当x∈[2n-1,2n](n∈Z)时,求f(x)的解析式.
②当x∈[2n-1,2n+1](其中n是给定的正整数)时,若函数y=f(x)的图象与函数y=kx的图象有且仅有两个公共点,求实数k的取值范围.
③当x∈[0,2n](n是给定的正整数且n≥3)时,求f(x)的解析式.