ÌâÄ¿ÄÚÈÝ
£¨2012•»ÆÆÖÇø¶þÄ££©ÒÑÖªº¯Êýy=f£¨x£©ÊǶ¨ÒåÓòΪRµÄżº¯Êý£¬ÇÒ¶Ôx¡ÊR£¬ºãÓÐf£¨1+x£©=f£¨1-x£©£®ÓÖµ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=x£®
£¨1£©µ±x¡Ê[-1£¬0]ʱ£¬Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÇóÖ¤£ºº¯Êýy=f£¨x£©£¨x¡ÊR£©ÊÇÒÔT=2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£»
£¨3£©½â´ð±¾Ð¡Ì⿼ÉúÖ»Ðè´ÓÏÂÁÐÈý¸öÎÊÌâÖÐÑ¡ÔñÒ»¸öд³ö½áÂÛ¼´¿É£¨ÎÞÐèд½âÌâ²½Ö裩£®×¢Ò⣺¿¼ÉúÈôÑ¡Ôñ¶àÓÚÒ»¸öÎÊÌâ½â´ð£¬Ôò°´·ÖÊý×îµÍÒ»¸öÎÊÌâµÄ½â´ðÕýÈ·Óë·ñ¸ø·Ö£®
¢Ùµ±x¡Ê[2n-1£¬2n]£¨n¡ÊZ£©Ê±£¬Çóf£¨x£©µÄ½âÎöʽ£®
¢Úµ±x¡Ê[2n-1£¬2n+1]£¨ÆäÖÐnÊǸø¶¨µÄÕýÕûÊý£©Ê±£¬Èôº¯Êýy=f£¨x£©µÄͼÏóÓ뺯Êýy=kxµÄͼÏóÓÐÇÒ½öÓÐÁ½¸ö¹«¹²µã£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®
¢Ûµ±x¡Ê[0£¬2n]£¨nÊǸø¶¨µÄÕýÕûÊýÇÒn¡Ý3£©Ê±£¬Çóf£¨x£©µÄ½âÎöʽ£®
£¨1£©µ±x¡Ê[-1£¬0]ʱ£¬Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÇóÖ¤£ºº¯Êýy=f£¨x£©£¨x¡ÊR£©ÊÇÒÔT=2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£»
£¨3£©½â´ð±¾Ð¡Ì⿼ÉúÖ»Ðè´ÓÏÂÁÐÈý¸öÎÊÌâÖÐÑ¡ÔñÒ»¸öд³ö½áÂÛ¼´¿É£¨ÎÞÐèд½âÌâ²½Ö裩£®×¢Ò⣺¿¼ÉúÈôÑ¡Ôñ¶àÓÚÒ»¸öÎÊÌâ½â´ð£¬Ôò°´·ÖÊý×îµÍÒ»¸öÎÊÌâµÄ½â´ðÕýÈ·Óë·ñ¸ø·Ö£®
¢Ùµ±x¡Ê[2n-1£¬2n]£¨n¡ÊZ£©Ê±£¬Çóf£¨x£©µÄ½âÎöʽ£®
¢Úµ±x¡Ê[2n-1£¬2n+1]£¨ÆäÖÐnÊǸø¶¨µÄÕýÕûÊý£©Ê±£¬Èôº¯Êýy=f£¨x£©µÄͼÏóÓ뺯Êýy=kxµÄͼÏóÓÐÇÒ½öÓÐÁ½¸ö¹«¹²µã£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®
¢Ûµ±x¡Ê[0£¬2n]£¨nÊǸø¶¨µÄÕýÕûÊýÇÒn¡Ý3£©Ê±£¬Çóf£¨x£©µÄ½âÎöʽ£®
·ÖÎö£º£¨1£©ÓÉy=f£¨x£©ÊÇRÉϵÄżº¯Êý£¬ÇÒx¡Ê[0£¬1]ʱ£¬f£¨x£©=x£¬ÓÉ´ËÄÜÇó³öµ±x¡Ê[-1£¬0]ʱ£¬f£¨x£©µÄ½âÎöʽ£®
£¨2£©¶ÔÓÚx¡ÊR£¬ºãÓÐf£¨1+x£©=f£¨1-x£©£¬¹Êf£¨2+x£©=f£¨-x£©£®ÓÉy=f£¨x£©ÊÇżº¯Êý£¬Äܹ»Ö¤Ã÷º¯Êýy=f£¨x£©£¨x¡ÊR£©ÊÇÒÔT=2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£®
£¨3£©ÀûÓã¨1£©µÄ½áÂÛ£¬½áºÏżº¯ÊýµÄÐÔÖʽøÐÐÇó½â£®
£¨2£©¶ÔÓÚx¡ÊR£¬ºãÓÐf£¨1+x£©=f£¨1-x£©£¬¹Êf£¨2+x£©=f£¨-x£©£®ÓÉy=f£¨x£©ÊÇżº¯Êý£¬Äܹ»Ö¤Ã÷º¯Êýy=f£¨x£©£¨x¡ÊR£©ÊÇÒÔT=2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£®
£¨3£©ÀûÓã¨1£©µÄ½áÂÛ£¬½áºÏżº¯ÊýµÄÐÔÖʽøÐÐÇó½â£®
½â´ð£º£¨±¾ÌâÂú·Ö18·Ö£©±¾Ìâ¹²ÓÐ3¸öСÌ⣬µÚ1СÌâÂú·Ö£¨5·Ö£©£¬µÚ2СÌâÂú·Ö£¨5·Ö£©£¬µÚ3СÌâ×î¶à£¨8·Ö£©£®
½â£¨1£©¡ßy=f£¨x£©ÊÇRÉϵÄżº¯Êý£¬ÇÒx¡Ê[0£¬1]ʱ£¬f£¨x£©=x£¬
ÓÖµ±x¡Ê[-1£¬0]ʱ£¬-x¡Ê[0£¬1]£¬ÓÐf£¨-x£©=-x£®
¡àf£¨x£©=-x£¨-1¡Üx¡Ü0£©£® ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡ £¨5·Ö£©
£¨2£©Ö¤Ã÷¡ß¶ÔÓÚx¡ÊR£¬ºãÓÐf£¨1+x£©=f£¨1-x£©£¬
¡àf£¨2+x£©=f£¨1+£¨1+x£©£©=f£¨1-£¨1+x£©£©£¬¼´f£¨2+x£©=f£¨-x£©£® ¡¡¡¡¡¡¡¡¡¡¡¡£¨7·Ö£©
ÓÖ¡ßy=f£¨x£©ÊÇżº¯Êý£¬
¡àf£¨2+x£©=f£¨x£©£¬¼´y=f£¨x£©ÊÇÖÜÆÚº¯Êý£¬ÇÒT=2¾ÍÊÇËüµÄÒ»¸öÖÜÆÚ£® ¡¡¡¡£¨10·Ö£©
£¨3£©ÒÀ¾ÝÑ¡Ôñ½â´ðµÄÎÊÌâÆÀ·Ö
¢Ùf£¨x£©=2n-x£¨x¡Ê[2n-1£¬2n]£©£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ £¨14·Ö£©
¢Ú0£¼k¡Ü
£® £¨16·Ö£©
¢Ûf(x)=
£¨18·Ö£©
½â£¨1£©¡ßy=f£¨x£©ÊÇRÉϵÄżº¯Êý£¬ÇÒx¡Ê[0£¬1]ʱ£¬f£¨x£©=x£¬
ÓÖµ±x¡Ê[-1£¬0]ʱ£¬-x¡Ê[0£¬1]£¬ÓÐf£¨-x£©=-x£®
¡àf£¨x£©=-x£¨-1¡Üx¡Ü0£©£® ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡ £¨5·Ö£©
£¨2£©Ö¤Ã÷¡ß¶ÔÓÚx¡ÊR£¬ºãÓÐf£¨1+x£©=f£¨1-x£©£¬
¡àf£¨2+x£©=f£¨1+£¨1+x£©£©=f£¨1-£¨1+x£©£©£¬¼´f£¨2+x£©=f£¨-x£©£® ¡¡¡¡¡¡¡¡¡¡¡¡£¨7·Ö£©
ÓÖ¡ßy=f£¨x£©ÊÇżº¯Êý£¬
¡àf£¨2+x£©=f£¨x£©£¬¼´y=f£¨x£©ÊÇÖÜÆÚº¯Êý£¬ÇÒT=2¾ÍÊÇËüµÄÒ»¸öÖÜÆÚ£® ¡¡¡¡£¨10·Ö£©
£¨3£©ÒÀ¾ÝÑ¡Ôñ½â´ðµÄÎÊÌâÆÀ·Ö
¢Ùf£¨x£©=2n-x£¨x¡Ê[2n-1£¬2n]£©£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ £¨14·Ö£©
¢Ú0£¼k¡Ü
1 |
2n+1 |
¢Ûf(x)=
|
µãÆÀ£º±¾Ì⿼²éº¯Êý½âÎöʽµÄÇ󷨣¬¿¼²éÖÜÆÚº¯ÊýµÄÖ¤Ã÷£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢Ò⺯ÊýÐÔÖʵÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿