摘要:cosθ=. ∴θ=即为所求.
网址:http://m.1010jiajiao.com/timu_id_23387[举报]
请先阅读:
设平面向量=(a1,a2),=(b1,b2),且与的夹角为è,
因为=||||cosè,
所以≤||||.
即,
当且仅当è=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)试求函数的最大值.
查看习题详情和答案>>
请先阅读:
设平面向量=(a1,a2),=(b1,b2),且与的夹角为θ,
因为•=||||cosθ,
所以•≤||||.
即,
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)试求函数的最大值.
查看习题详情和答案>>
设平面向量=(a1,a2),=(b1,b2),且与的夹角为θ,
因为•=||||cosθ,
所以•≤||||.
即,
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)试求函数的最大值.
查看习题详情和答案>>
请先阅读:
设平面向量
=(a1,a2),
=(b1,b2),且
与
的夹角为θ,
因为
•
=|
||
|cosθ,
所以
•
≤|
||
|.
即a1b1+a2b2≤
×
,
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
+
+
)(
+
+
)成立;
(II)试求函数y=
+
+
的最大值.
查看习题详情和答案>>
设平面向量
a |
b |
a |
b |
因为
a |
b |
a |
b |
所以
a |
b |
a |
b |
即a1b1+a2b2≤
|
|
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a | 2 1 |
a | 2 2 |
a | 2 3 |
b | 2 1 |
b | 2 2 |
b | 2 3 |
(II)试求函数y=
x |
2x-2 |
8-3x |