摘要:①∥, ②∥m
网址:http://m.1010jiajiao.com/timu_id_183771[举报]
m |
3 |
n |
m |
n |
3π |
2 |
(1)求函数f(x)的表达式,并求f(x)的增区间;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值. 查看习题详情和答案>>
m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;
④若y=sin(2x+
),则(-
,0)在函数图象上,其中真命题的序号是( )
①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;
④若y=sin(2x+
π |
3 |
π |
12 |
A、②③ | B、①④ | C、①③ | D、②④ |
M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.
(I)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?
(II)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.
查看习题详情和答案>>
(I)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?
(II)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.