摘要:(3) bn=Sn+1-Sn=an+12=, 由bn<,得 m>对于n∈N成立.
网址:http://m.1010jiajiao.com/timu_id_181916[举报]
数列{an}中,a3=1,a1+a2+…+an=an+1(n=1,2,3…).
(Ⅰ)求a1,a2;
(Ⅱ)求数列{an}的前n项和Sn;
(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,试求数列{cn}的前n项和. 查看习题详情和答案>>
(Ⅰ)求a1,a2;
(Ⅱ)求数列{an}的前n项和Sn;
(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,试求数列{cn}的前n项和. 查看习题详情和答案>>
设数列{an}的前n项和为Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t为正常数,n=2,3,4…).
(1)求证:{an}为等比数列;
(2)设{an}公比为f(t),作数列bn使b1=1,bn=f(
)(n≥2),试求bn,并求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)
查看习题详情和答案>>
(1)求证:{an}为等比数列;
(2)设{an}公比为f(t),作数列bn使b1=1,bn=f(
1 | bn-1 |