题目内容
设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列;
(2)设数列{an}是公比为f(t),作数列{bn},使b1=1,bn=f(
)(n=2,3,4,…),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1;
(3)若t=-3,设cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=
+
+…+
,求使k
≥(7-2n)Tn(n∈N+)恒成立的实数k的范围.
(1)求证:数列{an}是等比数列;
(2)设数列{an}是公比为f(t),作数列{bn},使b1=1,bn=f(
1 |
bn-1 |
(3)若t=-3,设cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=
1 |
c1 |
1 |
c2 |
1 |
cn |
n•2n+1 |
(n+1) |
分析:(1)由
可求得
=
(n=3,4,…),又a1=1,a2=
,可证数列{an}是首项为1,公比为
的等比数列;
(2)依题意可求得f(t)=
+
,bn=f(
)=
,可知数列{b2n-1}与{b2n}是首项分别为1和
,公差均为
的等差数列,且b2n=
,从而可求得b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1;
(3)可求得cn=-
,
=-
,数列{
}的前n项和为-
,对k
≥(7-2n)Tn(n∈N+)化简得k≥
对任意n∈N*恒成立,再构造函数dn=
,对n分类讨论,研究函数,{dn}与{cn}的单调性即可求得k的取值范围.
|
an |
an-1 |
2t+3 |
3t |
2t+3 |
3t |
2t+3 |
3t |
(2)依题意可求得f(t)=
2 |
3 |
1 |
t |
1 |
bn-1 |
2n+1 |
3 |
5 |
3 |
4 |
3 |
4n+1 |
3 |
(3)可求得cn=-
n(n+1) |
2 |
1 |
cn |
2n |
n+1 |
1 |
cn |
2n |
n+1 |
n•2n+1 |
(n+1) |
2n-7 |
2n |
2n-7 |
2n |
解答:解:(1)由S1=a1=1,S2=a1+a2=1+a2,得3t(1+a2)-(2t+3)=3t,则a2=
,于是
=
,
又
两式相减得3tan-(2t+3)an-1=0,
于是
=
(n=3,4,…)
因此,数列{an}是首项为1,公比为
的等比数列.
(2)按题意,f(t)=
=
+
,
故bn=f(
)=
+bn-1⇒bn=1+
(n-1)=
,
由bn=
,可知数列{b2n-1}与{b2n}是首项分别为1和
,公差均为
的等差数列,且b2n=
,
于是b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=-
(b2+b4+…+b2n)
=-
(2n2+3n)
(3)cn=log3a1+log3a2+…+log3an
=-(1+2+3+…+n)
=-
.
故
=-
=-2(
-
).
Tn=
+
+…+
=-2[(1-
)+(
-
)+…+(
-
)]
=-
.
所以数列{
}的前n项和为-
.化简得k≥
对任意n∈N*恒成立.
设dn=
,则dn+1-dn=
-
=
.
当n≥5,dn+1≤dn,{dn}为单调递减数列,1≤n<5,dn+1>dn,{dn}为单调递增数列.
当n≥5,cn+1≤cn,{cn}为单调递减数列,当1≤n<5,cn+1>cn,{cn}为单调递增数列.
=d4<d5=
,所以,n=5时,dn取得最大值为
.
所以,要使k≥
对任意n∈N*恒成立,k≥
.
2t+3 |
3t |
a2 |
a1 |
2t+3 |
3t |
又
|
于是
an |
an-1 |
2t+3 |
3t |
因此,数列{an}是首项为1,公比为
2t+3 |
3t |
(2)按题意,f(t)=
2t+3 |
3t |
2 |
3 |
1 |
t |
故bn=f(
1 |
bn-1 |
2 |
3 |
2 |
3 |
2n+1 |
3 |
由bn=
2n+1 |
3 |
5 |
3 |
4 |
3 |
4n+1 |
3 |
于是b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=-
4 |
3 |
=-
4 |
9 |
(3)cn=log3a1+log3a2+…+log3an
=-(1+2+3+…+n)
=-
n(n+1) |
2 |
故
1 |
cn |
2 |
n(n+1) |
1 |
n |
1 |
n+1 |
Tn=
1 |
c1 |
1 |
c2 |
1 |
cn |
=-2[(1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=-
2n |
n+1 |
所以数列{
1 |
cn |
2n |
n+1 |
2n-7 |
2n |
设dn=
2n-7 |
2n |
2(n+1)-7 |
2n+1 |
2n-7 |
2n |
9-2n |
2n |
当n≥5,dn+1≤dn,{dn}为单调递减数列,1≤n<5,dn+1>dn,{dn}为单调递增数列.
当n≥5,cn+1≤cn,{cn}为单调递减数列,当1≤n<5,cn+1>cn,{cn}为单调递增数列.
1 |
16 |
3 |
32 |
2 |
32 |
所以,要使k≥
2n-7 |
2n |
3 |
32 |
点评:本题考查等比关系的确定,考查数列与不等式的综合,突出考查等差数列的求和与等比数列的证明,考查化归思想与分类讨论思想,属于难题.

练习册系列答案
相关题目