题目内容
设数列{an}的前n项和为Sn,且对于任意的正整数n,Sn和an都满足Sn=2-an.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an求数列{bn}的通项公式;
(Ⅲ)设cn=n(3-bn),求数列{cn}的前n项和Tn.
分析:(Ⅰ)由题设知a1=1,an+Sn=2,an+1+Sn+1=2,两式相减:an+1-an+an+1=0,故有2an+1=an,
=
,n∈N+,由此能求出数列{an}的通项公式.
(Ⅱ)由bn+1=bn+an(n=1,2,3,…),知bn+1-bn=(
)n-1,再由累加法能推导出bn=3-2(
)n-1(n=1,2,3,…).
(Ⅲ)由cn=n(3-bn) =2n(
)n-1,知Tn=2[(
)0++2(
)+3 (
)2+…+(n-1)(
)n-2+n(
)n-1],再由错位相减法能够推导出数列{cn}的前n项和Tn.
an+1 |
an |
1 |
2 |
(Ⅱ)由bn+1=bn+an(n=1,2,3,…),知bn+1-bn=(
1 |
2 |
1 |
2 |
(Ⅲ)由cn=n(3-bn) =2n(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
解答:解:(Ⅰ)∵n=1时,a1+S1=a1+a1=2,∴a1=1,∵Sn=2-an,即an+Sn=2,∴an+1+Sn+1=2,两式相减:an+1-an+Sn+1-Sn=0,即an+1-an+an+1=0,
故有2an+1=an,∵an≠0,∴
=
,n∈N+,
所以,数列{an}为首项a1=1,公比为
的等比数列,an=(
)n-1,n∈N+,
(Ⅱ)∵bn+1=bn+an(n=1,2,3,…),∴bn+1-bn=(
)n-1,
得b2-b1=1,b3-b2=
,b4-b3=(
)2,…,bn-bn-1=(
)n-2(n=2,3,…)
将这n-1个等式相加,
bn-b1=1+
+(
)2+(
)3+…+(
)n-2=
=2-2(
)n-1,
又∵b1=1,∴bn=3-2(
)n-1(n=1,2,3,…)
(Ⅲ)∵cn=n(3-bn) =2n(
)n-1,
∴Tn=2[(
)0++2(
)+3 (
)2+…+(n-1)(
)n-2+n(
)n-1]①
而
Tn=2[(
) +2(
)2+3(
)3+…+(n-1)(
)n-1+n(
)n ]②
①-②得:
Tn=2[(
)0+
+(
)2+…+(
)n-1]-2n(
)n,
Tn=4×
-4n×(
)n=8-
-4n(
)n=8-(8+4n)
,(n=1,2,3,…).
故有2an+1=an,∵an≠0,∴
an+1 |
an |
1 |
2 |
所以,数列{an}为首项a1=1,公比为
1 |
2 |
1 |
2 |
(Ⅱ)∵bn+1=bn+an(n=1,2,3,…),∴bn+1-bn=(
1 |
2 |
得b2-b1=1,b3-b2=
1 |
2 |
1 |
2 |
1 |
2 |
将这n-1个等式相加,
bn-b1=1+
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1-(
| ||
1-
|
1 |
2 |
又∵b1=1,∴bn=3-2(
1 |
2 |
(Ⅲ)∵cn=n(3-bn) =2n(
1 |
2 |
∴Tn=2[(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
而
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
①-②得:
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
Tn=4×
1-(
| ||
1-
|
1 |
2 |
8 |
2n |
1 |
2 |
1 |
2n |
点评:第(Ⅰ)题考查迭代法求数列通项公式的方法,第(Ⅱ)题考查累加法求数列通项公式的方法,第(Ⅲ)题考查错位相减求数列前n项和的方法.解题时要认真审题,仔细解答.

练习册系列答案
相关题目