题目内容
数列{an}中,a3=1,a1+a2+…+an=an+1(n=1,2,3…).(Ⅰ)求a1,a2;
(Ⅱ)求数列{an}的前n项和Sn;
(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,试求数列{cn}的前n项和.
分析:(Ⅰ)由题意可得,a1=a2,a1+a2=a3
(Ⅱ)由Sn=an+1=Sn+1-Sn,可得2Sn=Sn+1,
=2,从而可得{Sn}为等比数列,进而可求
(Ⅲ)由(II)可得,Sn=
(2n-1)=2n-2,bn=n-2,从而可求cn=
+n2n-2,令A=
+
+…+
,利用分组求和,令B=1•2-1+2•20+3•21+4•22+…+n2n-2,利用错位相减可求,从而可求
(Ⅱ)由Sn=an+1=Sn+1-Sn,可得2Sn=Sn+1,
Sn+1 |
Sn |
(Ⅲ)由(II)可得,Sn=
1 |
2 |
1 |
(n+1)(n+2) |
1 |
2•3 |
1 |
3•4 |
1 |
(n+1)(n+2) |
解答:解:(Ⅰ)∵a1=a2,a1+a2=a3,∴2a1=a3=1,∴a1=
,a2=
.…(4分)
(Ⅱ)∵Sn=an+1=Sn+1-Sn,∴2Sn=Sn+1,
=2,…(6分)
∴{Sn}是首项为S1=a1=
,公比为2的等比数列.
∴Sn=
•2n-1=2n-2.…(8分)
(Ⅲ)Sn=
(2n-1)=2n-2,bn=n-2,bn+3=n+1,bn+4=n+2,
∵cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,∴cn•(n+1)(n+2)=1+n(n+1)(n+2)2n-2,
即cn=
+n2n-2.…(10分)
令A=
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
-
.…(12分)
令B=1•2-1+2•20+3•21+4•22+…+n2n-2,①
2B=1•20+2•21+3•22+…+(n-1)2n-2+n2n-1,②
②-①得
B=n2n-1-2-1-20-21-…-2n-2=n2n-1-
=(n-1)2n-1+
,
∴c1+c2+…+cn=
-
+(n-1)2n-1+
=(n-1)2n-1+
.…(14分)
1 |
2 |
1 |
2 |
(Ⅱ)∵Sn=an+1=Sn+1-Sn,∴2Sn=Sn+1,
Sn+1 |
Sn |
∴{Sn}是首项为S1=a1=
1 |
2 |
∴Sn=
1 |
2 |
(Ⅲ)Sn=
1 |
2 |
∵cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,∴cn•(n+1)(n+2)=1+n(n+1)(n+2)2n-2,
即cn=
1 |
(n+1)(n+2) |
令A=
1 |
2•3 |
1 |
3•4 |
1 |
(n+1)(n+2) |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
=
1 |
2 |
1 |
(n+2) |
令B=1•2-1+2•20+3•21+4•22+…+n2n-2,①
2B=1•20+2•21+3•22+…+(n-1)2n-2+n2n-1,②
②-①得
B=n2n-1-2-1-20-21-…-2n-2=n2n-1-
2-1(1-2n) |
1-2 |
1 |
2 |
∴c1+c2+…+cn=
1 |
2 |
1 |
(n+2) |
1 |
2 |
n+1 |
n+2 |
点评:本题主要考查了利用递推公式求解数列的通项公式,还考查了裂项求和及错位相减求解数列的和,这也是数列求和的重要的两个方法.

练习册系列答案
相关题目
数列{an}中,a3=2,a7=1,若{
}为等差数列,则a11=( )
1 |
an+1 |
A、0 | ||
B、
| ||
C、
| ||
D、2 |