网址:http://m.1010jiajiao.com/timu_id_176987[举报]
一、选择题(本大题共12小题,每小题4分,共48分)
1.B 2.A 3.D 4.C 5.D 6.C
7.A 8.C 9.B 10.C 11.A 12.B
二、填空题(本大题共4小题,每小题4分,共16分)
13.
14.
15. 增函数的定义
16. 与该平面平行的两个平面
三、解答题(本大题共3小题,每小题12分,共36分)
17.(本小题满分12分)
解:(Ⅰ)涉及两个变量,年龄与脂肪含量.
因此选取年龄为自变量,脂肪含量为因变量.
作散点图,从图中可看出与具有相关关系.
┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)对的回归直线方程为
.
当时,,.
当时,,.
所以岁和岁的残差分别为和.
┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分
证明:由于,,
所以只需证明.
展开得,即.
所以只需证.
因为显然成立,
所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分
18B. (本小题满分12分)
证明:(Ⅰ)因为,所以.
由于函数是上的增函数,
所以.
同理, .
两式相加,得.┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)逆命题:
若,则.
用反证法证明
假设,那么
所以.
这与矛盾.故只有,逆命题得证.
┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分
解:(Ⅰ)由于,且.
所以当时,得,故.
从而.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)数列不可能为等差数列,证明如下:
由,得
若存在,使为等差数列,则,
即,解得.
于是,.
这与为等差数列矛盾.所以,对任意,数列都不可能是等差数列.
┄┄┄┄┄┄┄┄┄┄┄┄12分
19B. (本小题满分12分)
解:(Ⅰ),.
,.┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)由(Ⅰ)可得,
,
.
猜想:是公比为的等比数列.
证明如下:因为,
又,所以,
所以数列是首项为,公比为的等比数列.┄┄┄┄┄┄┄┄┄┄┄┄12分
π | 3 |
B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB |
PA |
1 |
2 |
PC |
PD |
1 |
3 |
BC |
AD |
C.(坐标系与参数方程选做题)设曲线C的参数方程为
|
2 |
cosθ-sinθ |
2 |
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3 |
C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π |
3 |