题目内容

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 
分析:A  由函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0,故判别式△=4a2-4a-3≤0,解出a 的范围.
B 由切线长定理求得DB=2,在△ABC 和△ACD 中,分别使用余弦理,解方程组求得 AC 的长.
C 把极坐标方程化为普通方程,可得曲线表示一个圆,故曲线上任意两点间的距离最大值为圆的直径.
解答:解:A,∵函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.∴△=4a2-4a-3≤0,
解得-
1
2
≤a≤
3
2

B,由圆的切割线定理得  DC2=DB×DA,∴12=DB×(4+DB ),DB=2,DA=2+4=6,
设 AC=x,∠CAB=θ,在△ABC 和△ACD 中,分别使用余弦理得:
16=x2+16-2x•4cosθ,12=x2+36-2x•6cosθ,消去θ,解得  x=4
3

C,曲线ρ=4cos(θ-
π
3
)
 即 ρ=2cosθ+
3
sinθ,∴x2+y2=2x+
3
y,
(x-1)2+(y-
3
2
)
2
=
7
4
,表示圆心在(1,
3
2
),半径等于
7
2
的圆.圆上任意两点间的距离最大
为直径
7

综上,故答案为:-
1
2
≤a≤
3
2
;4
3
7
点评:本题考查把极坐标方程化为普通方程,函数的恒成立问题,圆的切割线定理的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网