摘要:于是可设直线的方程为.---2分
网址:http://m.1010jiajiao.com/timu_id_121048[举报]
已知点
,动点N(x,y),设直线NP,NQ的斜率分别记为k1,k2,记
(其中“?”可以是四则运算加、减、乘、除中的任意一种运算),坐标原点为O,点M(2,1).
(Ⅰ)探求动点N的轨迹方程;
(Ⅱ)若“?”表示乘法,动点N的轨迹再加上P,Q两点记为曲线C,直线l平行于直线OM,且与曲线C交于A,B两个不同的点.
(ⅰ)若原点O在以AB为直径的圆的内部,试求出直线l在y轴上的截距m的取值范围.
(ⅱ)试求出△AOB面积的最大值及此时直线l的方程.
查看习题详情和答案>>
(Ⅰ)探求动点N的轨迹方程;
(Ⅱ)若“?”表示乘法,动点N的轨迹再加上P,Q两点记为曲线C,直线l平行于直线OM,且与曲线C交于A,B两个不同的点.
(ⅰ)若原点O在以AB为直径的圆的内部,试求出直线l在y轴上的截距m的取值范围.
(ⅱ)试求出△AOB面积的最大值及此时直线l的方程.
查看习题详情和答案>>
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
查看习题详情和答案>>
已知点P(-2
,0),Q(2
,0),动点N(x,y),设直线NP,NQ的斜率分别记为k1,k2,记k1?k2=-
(其中“?”可以是四则运算加、减、乘、除中的任意一种运算),坐标原点为O,点M(2,1).
(Ⅰ)探求动点N的轨迹方程;
(Ⅱ)若“?”表示乘法,动点N的轨迹再加上P,Q两点记为曲线C,直线l平行于直线OM,且与曲线C交于A,B两个不同的点.
(ⅰ)若原点O在以AB为直径的圆的内部,试求出直线l在y轴上的截距m的取值范围.
(ⅱ)试求出△AOB面积的最大值及此时直线l的方程.
查看习题详情和答案>>
| 2 |
| 2 |
| 1 |
| 4 |
(Ⅰ)探求动点N的轨迹方程;
(Ⅱ)若“?”表示乘法,动点N的轨迹再加上P,Q两点记为曲线C,直线l平行于直线OM,且与曲线C交于A,B两个不同的点.
(ⅰ)若原点O在以AB为直径的圆的内部,试求出直线l在y轴上的截距m的取值范围.
(ⅱ)试求出△AOB面积的最大值及此时直线l的方程.