摘要:19.证明:(1)面A1B1C1∥面ABC 故B1C1∥BC.A1C1∥AC又BC⊥AC 则B1C1⊥A1C1又 面AB1C⊥面ABC 则BC⊥面AB1C 则BC⊥AB1B1C1⊥AB1 又∵B1C1∩A1C1=C1 B1C1∩AB1=B1故B1C1为异面直线AB1与A1C1的公垂线-----....4分(2)由于BC⊥面AB1C 则面VBC⊥面AB1C过A作AH⊥B1C于H.则AH⊥面VBC
网址:http://m.1010jiajiao.com/timu_id_117690[举报]
![](http://thumb.zyjl.cn/pic3/upload/images/201207/11/4c187d0a.png)
1 | 2 |
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.
![](http://thumb.zyjl.cn/pic3/upload/images/201210/67/6230c5f3.png)
(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H-AB-C的平面角等于30°,SA=2
3 |
![](http://thumb.zyjl.cn/pic3/upload/images/201108/20/4f5c3fee.png)
2 |
(1)求证A1B⊥CE;
(2)求C1F与侧面ABB1A1所成角的正切值;
(3)求异面直线A1B与C1F所成角.