摘要:(Ⅱ)解:过作交于.
网址:http://m.1010jiajiao.com/timu_id_101979[举报]
(选做题)在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过
N点的切线交CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)若⊙O的半径为2
,OA=
OM,求MN的长.
B.选修4-2:矩阵与变换
曲线x2+4xy+2y2=1在二阶矩阵M=
的作用下变换为曲线x2-2y2=1,求实数a,b的值;
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
cos(θ+
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
设a,b,c均为正实数.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求证:
+
+
≥
+
+
.
查看习题详情和答案>>
A.选修4-1:几何证明选讲
如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过
N点的切线交CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)若⊙O的半径为2
3 |
3 |
B.选修4-2:矩阵与变换
曲线x2+4xy+2y2=1在二阶矩阵M=
|
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2 |
π |
4 |
|
D.选修4-5:不等式选讲
设a,b,c均为正实数.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求证:
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
(选修4-4:坐标系与参数方程)
已知椭圆的长轴长为6,焦距F1F2=4
,过椭圆左焦点F1作一直线,交椭圆于两点M、N,设∠F2F1M=α(0≤α<π),当α为何值时,MN与椭圆短轴长相等?(用极坐标或参数方程方程求解)
查看习题详情和答案>>
已知椭圆的长轴长为6,焦距F1F2=4
2 |
(2012•宝鸡模拟)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若关于x的不等式|x+1|+|x-2|≤a有解,则实数a的取值范围是
B.(几何证明选做题)如图所示,圆O是△ABC的外接圆,过C点的切线交AB的延长线于点D,CD=2
,AB=BC=3,则AC长
.
C.(坐标系与参数方程选做题)极坐标系下,直线ρcos(θ-
)=
与圆ρ=
的公共点个数是
查看习题详情和答案>>
A.(不等式选做题)若关于x的不等式|x+1|+|x-2|≤a有解,则实数a的取值范围是
[3,+∞)
[3,+∞)
.B.(几何证明选做题)如图所示,圆O是△ABC的外接圆,过C点的切线交AB的延长线于点D,CD=2
7 |
3
| ||
2 |
3
| ||
2 |
C.(坐标系与参数方程选做题)极坐标系下,直线ρcos(θ-
π |
4 |
2 |
2 |
1
1
.(2012•徐州模拟)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.
B.选修4-2:矩阵与变换
已知矩阵M=
(1)求矩阵M的逆矩阵;
(2)求矩阵M的特征值及特征向量;
C.选修4-2:矩阵与变换
在平面直角坐标系x0y中,求圆C的参数方程为
(θ为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
)=2
.若直线l与圆C相切,求r的值.
D.选修4-5:不等式选讲
已知实数a,b,c满足a>b>c,且a+b+c=1,a2+b2+c2=1,求证:1<a+b<
.
查看习题详情和答案>>
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.
B.选修4-2:矩阵与变换
已知矩阵M=
|
(1)求矩阵M的逆矩阵;
(2)求矩阵M的特征值及特征向量;
C.选修4-2:矩阵与变换
在平面直角坐标系x0y中,求圆C的参数方程为
|
π |
4 |
2 |
D.选修4-5:不等式选讲
已知实数a,b,c满足a>b>c,且a+b+c=1,a2+b2+c2=1,求证:1<a+b<
4 |
3 |