题目内容

(2012•宝鸡模拟)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若关于x的不等式|x+1|+|x-2|≤a有解,则实数a的取值范围是
[3,+∞)
[3,+∞)

B.(几何证明选做题)如图所示,圆O是△ABC的外接圆,过C点的切线交AB的延长线于点D,CD=2
7
,AB=BC=3,则AC长
3
7
2
3
7
2

C.(坐标系与参数方程选做题)极坐标系下,直线ρcos(θ-
π
4
)=
2
与圆ρ=
2
的公共点个数是
1
1
分析:A. 由已知条件利用绝对值不等式的性质可得|x+1|+|x-2|≥3,结合题意可得a≥3.
B.结合线割线定理,我们可以求出DB的长,再由△DBC∽△DCA根据相似三角形的性质可以求出AC的长.
C.把极坐标方程化为直角坐标方程,求出圆心到直线的距离,将此距离和圆的半径作对比,得出结论.
解答:解:A.∵|x+1|+|x-2|≥|(x+1)-(x-2)|=3,即|x+1|+|x-2|≥3,
由关于x的不等式|x+1|+|x-2|≤a有解,知a≥3,
故答案为[3,+∞).
B.由切割线定理得:DB•DA=DC2,即DB(DB+BA)=DC2,∴DB2+3DB-28=0,得DB=4.
∵∠A=∠BCD,∴△DBC∽△DCA,∴
BC
CA
=
DB
BC
,解得AC=
BC•DC
BD
=
3
7
2

故答案为
3
7
2

C.直线ρcos(θ-
π
4
)=
2
 即
2
2
ρcosθ+
2
2
ρsinθ=
2
,化为直角坐标方程为 x+y-2=0,
圆ρ=2 即 x2+y2=4,圆心到直线的距离等于
|0+0-2|
2
=
2
<2(半径),
故直线和圆相交,故直线和圆有两个交点,
故答案为 2.
点评:本题主要考查绝对值不等式、有关绝对值不等式恒成立的问题.与圆有关的比例线段,相似三角形的性质.把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网