摘要:21.(理)已知正项数列满足对一切,有.其中. (Ⅰ)求数列的通项公式; (Ⅱ) 求证: 当时, . (文)已知数列{}的前项的和为.对一切正整数都有. (1)求数列{}的通项公式, (2)若.证明:.
网址:http://m.1010jiajiao.com/timu3_id_533190[举报]
(14分)若数列
满足
,其中
为常数,则称数列
为等方差数列.已知等方差数列
满足![]()
成等比数列且互不相等.
(Ⅰ)求数列
的通项公式;
(Ⅱ)求数列
的前
项和;
.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。
(1)求f(1), f(
)的值;
(2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(3)一个各项均为正数的数列{a??n}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;
(4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·
.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.
已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,且对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差数列{bn}的任一项bn∈A∩B,其中b1是A∩B中最的小数,且88<b8<93,求{bn}的通项公式;
(3)设数列{cn}满足
,是否存在正整数p,q(1<p<q),使得c1,cp,cq成等比数列?若存在,求出所有的p,q的值;若不存在,请说明理由.
查看习题详情和答案>>
.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。
(1)求f(1), f(
)的值;
(2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(3)一个各项均为正数的数列{an}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;
(4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·
.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。
(1)求f(1), f(
(2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(3)一个各项均为正数的数列{an}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;
(4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·