摘要: (本题满分12分.第1小题4分.第2小题8分) 如图.已知点在圆柱的底面圆上. 为圆的直径. (1)求证:, (2)若圆柱的体积为.. .求异面直线与所成的角(用 反三角函数值表示结果).
网址:http://m.1010jiajiao.com/timu3_id_532308[举报]
(本题满分12分,第Ⅰ小题4分,第Ⅱ小题5分,第Ⅲ小题3分)
如图,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直线
与直线
所成的角为60°.
(Ⅰ)求证:平面
⊥平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)求三棱锥
的体积.
(本题满分12分,第Ⅰ小题4分,第Ⅱ小题5分,第Ⅲ小题3分)
如图,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直线
与直线
所成的角为60°.
(Ⅰ)求证:平面
⊥平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)求三棱锥
的体积.
(Ⅰ)求证:平面
(Ⅱ)求二面角
(Ⅲ)求三棱锥
(本题满分12分)
在高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.
(Ⅰ)求选出的4 人均选《数学解题思想与方法》的概率;
(Ⅱ)设
为选出的4个人中选《数学运算》的人数,求
的分布列和数学期望.