摘要:17.如图.四棱锥P -ABCD的底面是矩形.侧面PAD是 正三角形.且侧面PAD⊥底面ABCD.E 为侧棱PD的中点. (1)试判断直线PB与平面EAC的关系, (2)求证:AE⊥平面PCD, (3)若AD = AB.试求二面角A-PC-D的正切值, (4)当为何值时.PB⊥AC ?
网址:http://m.1010jiajiao.com/timu3_id_4471835[举报]
(本题满分14分).如图所示,四棱锥P-ABCD的底面积ABCD是边长为1的菱形,
∠BCD=60°,E是CD的中点,PA⊥底面积ABCD,PA=.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD 于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)
(Ⅲ)求二面角A-BE-P的大小.
查看习题详情和答案>>
(本题满分14分).如图所示,四棱锥P-ABCD的底面积ABCD是边长为1的菱形,
∠BCD=60°,E是CD的中点,PA⊥底面积ABCD,PA=.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD 于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)
(Ⅲ)求二面角A-BE-P的大小.
∠BCD=60°,E是CD的中点,PA⊥底面积ABCD,PA=.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD 于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)
(Ⅲ)求二面角A-BE-P的大小.
(本题满分14分)如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB‖CD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:CD平面BEF;
(Ⅱ)设PA=k·AB,且二面角E-BD-C的平面角大于,求k的取值范围.
查看习题详情和答案>>