摘要:已知函数满足.且 对定义域中的任意x成立.求函数的解析式.
网址:http://m.1010jiajiao.com/timu3_id_4467166[举报]
已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|<m|x|,则称f(x)为F函数.给出下列函数:
①f(x)=x2;
②f(x)=sinx+cosx;
③f(x)=
;
④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的序号为( )
①f(x)=x2;
②f(x)=sinx+cosx;
③f(x)=
x |
x2+x+1 |
④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的序号为( )
A、②④ | B、①③ | C、③④ | D、①② |
已知函数f(x)的定义域为R,对任意实数x,y满足f(x+y)=f(x)+f(y)+
,且f(
)=0,当x>
时,f(x)>0.给出以下结论:①f(0)=-
;②f(-1)=-
;③f(x)为R上减函数;④f(x)+
为奇函数;⑤f(x)+1为偶函数.其中正确结论的序号是
查看习题详情和答案>>
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
①②④
①②④
.
已知函数f(x)=ax+bsinx,当x=
时,f(x)取得极小值
-
.
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
[5x-f(x)],设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.
查看习题详情和答案>>
π |
3 |
π |
3 |
3 |
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1 |
8 |