题目内容

已知函数f(x)的定义域为R,对任意实数x,y满足f(x+y)=f(x)+f(y)+
1
2
,且f(
1
2
)=0,当x
1
2
时,f(x)>0.给出以下结论:①f(0)=-
1
2
;②f(-1)=-
3
2
;③f(x)为R上减函数;④f(x)+
1
2
为奇函数;⑤f(x)+1为偶函数.其中正确结论的序号是
①②④
①②④
分析:由题意采用赋值法,可解决①②,在此基础上继续对各个选项逐一验证可得答案.
解答:解:由题意和xy的任意性,取x=y=0代入可得f(0)=f(0)+f(0)+
1
2
,即f(0)=-
1
2
,故①正确;
取x=
1
2
,y=-
1
2
代入可得f(0)=f(
1
2
)+f(-
1
2
)+
1
2
,即-
1
2
=0+f(-
1
2
)+
1
2
,解得f(-
1
2
)=-1,
再令x=y=-
1
2
代入可得f(-1)=f(-
1
2
)+f(-
1
2
)+
1
2
=-2+
1
2
=-
3
2
,故②正确;
令y=-x代入可得-
1
2
=f(0)=f(x)+f(-x)+
1
2
,即f(x)+
1
2
+f(-x)+
1
2
=0,故f(x)+
1
2
为奇函数,④正确;
取y=-1代入可得f(x-1)=f(x)+f(-1)+
1
2
,即f(x-1)-f(x)=f(-1)+
1
2
=-1<0,即f(x-1)<f(x),
故③f(x)为R上减函数,错误;
⑤错误,因为f(x)+1=f(x)+
1
2
+
1
2
,由③可知g(x)=f(x)+
1
2
为奇函数,故g(-x)+
1
2
-g(x)-
1
2
=-2g(x)不恒为0,
故函数f(x)+1不是偶函数
故答案为:①②④
点评:本题考查命题真假的判断,熟记函数的性质的综合应用,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网